10-Years Studies of the Soil Physical Condition after One-Time Biochar Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Field Experiment and Sampling
2.2. Analyses
- -
- soil texture—particle size distributions (PSD)—with Casagrande method modified by Prószyński [53],
- -
- particle density (PD)—with the pycnometric method [54] (Mg × m−3),
- -
- bulk density (BD)—with the gravimetric method, from the ratio of the mass of soil dried at 105 °C to the initial soil volume of 100 cm3 [55] (Mg × m−3),
- -
- total porosity (TP) was calculated from the results of particle density (PD) and bulk density (BD), TP = 1 − BD/PD [56] (m3 × m−3),
- -
- air capacity at the potential of −15.5 kPa (FAC) was derived from the results of total porosity (TP) and field water capacity (FC) (−15.5 kPa), FAC = TP−FC [56] (m3 × m−3),
- -
- air permeability at the potential of −15.5 kPa (FAP) was measured using an apparatus for the measurement of permeability of molding sand, LPiR-2e [7,8,9]. The measurements were conducted at vertical (upward) airflow through the soil sample. The pressure head in the measurement chamber was 0.981 kPa (100 mm H2O), and the ambient temperature was stabilized (20 ± 1.0 °C). The relative air humidity was 40 ± 5%. The dynamic air viscosity (10−8 × m2 × Pa−1 × s−1) was not taken into account in the measurement results. The apparatus was produced by MULTISERW-Morek (Poland),
- -
- water content at sampling (SM) was calculated from the ratio of the mass of water contained in the soil during the sampling to the dry matter of soil dried at 105 °C [57] (kg × kg−1),
- -
- -
- -
2.3. Statistical Analysis
3. Results and Discussion
3.1. Soil Texture (PSD) and Density (PD and BD)
3.2. Soil Total Porosity (TP) and Air Properties (FAC and FAP)
3.3. Soil Water Properties (SM, FC, AWC and UWC) and FC/TP Ratio
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blum, W.E.H. Basic concepts: Degradation, resilience, and rehabilitation. In Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Lal, R. Soil and sustainability agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–65. [Google Scholar] [CrossRef]
- Lal, R. Soils and world food security. Soil Tillage Res. 2009, 102, 1–4. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Holthusen, D.; Horn, R. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res. 2016, 155, 166–175. [Google Scholar] [CrossRef]
- Baran, S.; Pranagal, J.; Bik, M. Usefulness of mineral wool Grodan and sewage sludge in management of water properties in soils devastated during extraction of sulphur by Frash method. Miner. Resour. Manag. 2008, 24, 81–95. [Google Scholar]
- Pranagal, J.; Domżał, H.; Słowińska-Jurkiewicz, A.; Świca, M.; Zawiślak-Pranagal, M. Effect of popectin spent grains on soil filtration properties. Acta Agrophys. 2002, 70, 277–286. [Google Scholar]
- Pranagal, J.; Oleszczuk, P.; Tomaszewska-Krojańska, D.; Kraska, P.; Różyło, K. Effect of biochar application on the physical properties of Haplic Podzol. Soil Tillage Res. 2017, 174, 92–103. [Google Scholar] [CrossRef]
- Pranagal, J.; Ligęza, S.; Smal, H. Impact of Effective Microorganisms (EM) application on the physical condition of Haplic Luvisol. Agronomy 2020, 10, 1049. [Google Scholar] [CrossRef]
- Jones, C.A. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J. 1983, 47, 1208–1212. [Google Scholar] [CrossRef]
- McQueen, D.J.; Shepherd, T.G. Physical changes and compaction sensitivity of a fine textured, poorly drained soil (Typic endoaquept) under varying durations of cropping, Manawatu Region, New Zealand. Soil Tillage Res. 2002, 63, 93–107. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Aust. J. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Pranagal, J.; Tomaszewska-Krojańska, D.; Smal, H.; Ligęza, S. Impact of selected waste applications on soil compaction. Agron. Sci. 2019, 74, 19–32. [Google Scholar] [CrossRef]
- Edwards, C.A. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur. J. Soil Biol. 2002, 38, 225–231. [Google Scholar] [CrossRef]
- Van-Camp, L.; Bujarrabal, B.; Gentile, A.R.; Jones, R.J.A.; Montanarella, L.; Olazabal, C.; Selvaradjou, S.K. Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection; EUR 21319 EN/3; Office for Official Publications of the European Communities: Luxembourg, 2004; pp. 311–496. [Google Scholar]
- Angers, D.A.; Eriksen-Hamel, N.S. Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Sci. Soc. Am. J. 2008, 72, 1370–1374. [Google Scholar] [CrossRef]
- Hillel, D.; Rosenzweig, C. Conclusion: Agricultural solutions for climate change at global and regional scales. In Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications; ICP Series on Climate Change Impacts, Adaptation, and Mitigation 2; Hillel, D., Rosenzweig, C., Eds.; Imperial College Press: London, UK, 2012; pp. 281–292. [Google Scholar]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, G.; Mattana, S.; Bonmati, M.; Woche, S.K.; Bachmann, J. Soil wetting-drying and water-retention properties in a mine-soil treated with composted and thermally-dried sludges. Eur. J. Soil Sci. 2011, 62, 696–708. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249, 1–11. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R.; Yadav, G.S. Long-term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in central Ohio, USA. Geoderma 2020, 363, 114164. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Nurse, R.; Phillips, L.; Drury, C.F.; Yang, X.M.; Page, E.R. Characterizing mass-volume-density-porosity relationships in a sandy loam soil amended with compost. Can. J. Soil Sci. 2020, 100, 1–13. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef] [PubMed]
- Różyło, K.; Oleszczuk, P.; Jośko, I.; Kraska, P.; Kwiecińska-Poppe, E.; Andruszczak, S. An ecotoxicological evaluation of soil fertilized with biogas residues or mining waste. Environ. Sci. Poll. Res. 2015, 22, 7833–7842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Różyło, K.; Gawlik-Dziki, U.; Świeca, M.; Różyło, R.; Pałys, E. Winter wheat fertilized with biogas residue and mining waste: Yielding and the quality of grain. J. Sci. Food Agric. 2016, 96, 3454–3461. [Google Scholar] [CrossRef]
- Bandara, T.; Franks, A.; Xu, J.; Bolan, N.; Wang, H.; Tang, C. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Crit. Rev. Environ. Sci. Technol. 2020, 50, 903–978. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Wang, H.; Sarkar, B.; Shaheen, S.M.; Gielen, G.; Bolan, N.; Guo, J.; Che, L.; Sun, H.; et al. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. J. Environ. Manag. 2020, 261, 110246. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Baek, K.; Xue, J.; Li, Y.; Beiyuan, J. Preface—Biochar and agricultural sustainability. J. Soils Sediments 2020, 20, 3015–3016. [Google Scholar] [CrossRef]
- Wu, P.; Ata-Ul-Karim, S.T.; Singh, B.P.; Wang, H.; Wu, T.; Liu, C.; Fang, G.; Zhou, D.; Wang, Y.; Chen, W. A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 2019, 1, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Hu, S.D.; Chen, J.H.; Muller, K.; Li, Y.C.; Fu, W.J.; Lin, Z.W.; Wang, H.L. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Aydin, E.; Šimanský, V.; Horák, J.; Igaz, D. Potential of Biochar to Alternate Soil Properties and Crop Yields 3 and 4 Years after the Application. Agronomy 2020, 10, 889. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Alotaibi, M.A.; Alhammad, B.A.; Alharbi, B.M.; Refay, Y.; Badawy, S.A. Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy 2020, 10, 790. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, Y.; Bolan, N.; Shaheen, S.M.; Xu, S.; Wu, X.; Xu, X.; Hu, H.; Lin, J.; Zhang, F.; et al. Conversion of biological solid waste to graphene-containing biochar for water remediation: Acritical review. Chem. Eng. J. 2020, 390, 124611. [Google Scholar] [CrossRef]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Wu, Y.; Ullah, H.; Xiao, X.; Chen, B. Application of biochar—Based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gao, B.; Fang, J.; Zou, W.; Dong, L.; Cao, C.; Zhang, J.; Li, Y.; Wang, H. Chemically activated hydrochar as an effective adsorbent forvolatile organic compounds (VOCs). Chemosphere 2019, 218, 680–686. [Google Scholar] [CrossRef]
- Conte, P. Biochar, soil fertility, and environment. Biol. Fertil. Soils 2014, 50, 1175. [Google Scholar] [CrossRef] [Green Version]
- Morales, V.L.; Pérez-Reche, F.J.; Hapca, S.M.; Hanley, K.L.; Lehmann, J.; Zhang, W. Reverse engineering of biochar. Bioresour. Technol. 2015, 183, 163–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenborn, S.L.; Edenborn, H.M.; Krynock, R.M.; Zickefoose Haug, K.L. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar. J. Environ. Manag. 2015, 150, 226–234. [Google Scholar] [CrossRef]
- Inbar, A.; Ben-Hur, M.; Sternberg, M.; Lado, M. Using polyacrylamide to mitigate post-fire soil erosion. Geoderma 2015, 239, 107–114. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202, 183–191. [Google Scholar] [CrossRef]
- Herath, H.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Nelissen, V.; Ruysschaert, G.; Manka’Abusi, D.; D’Hose, T.; de Beuf, K.; Al-Barri, B.; Cornelis, W.; Boeckx, P. Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur. J. Agron. 2015, 62, 65–78. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Council Directive EC. 31/EC Directive on the landfill of waste, special edition in Polish: Chapter 15. Off. J. 1999, 4, 228–246. [Google Scholar]
- GUS—Statistics Poland. Means of production in agriculture in the 2018/19 farming year. Stat. Anal. 2020, 1, 116–185. [Google Scholar]
- Weber, J.; Karczewska, A.; Drozd, J.; Licznar, M.; Licznar, S.; Jamroz, E.; Kocowicz, A. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 2007, 39, 1294–1302. [Google Scholar] [CrossRef]
- Minister of Agriculture and Rural Development. Regulation on the implementation of certain provisions of the Act on fertilizers and fertilization. J. Laws 2008, 765, 6515–6520. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Polish Society of Soil Science. Particle size distribution and textural classes of soils and mineral materials—Classification of Polish Society of Soil Science 2008. Soil Sci. Ann. 2009, 60, 5–16. [Google Scholar]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 443–460. [Google Scholar]
- Gardner, W.H. Water content. In Methods of Soil Analysis 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 493–541. [Google Scholar]
- Cassel, D.K.; Nielsen, D.R. Field capacity and available water capacity. In Methods of Soil Analysis 1, Physical and Mineralogical Methods; Klute, A., Ed.; ASA-SSSA Inc.: Madison, WI, USA, 1986; pp. 901–924. [Google Scholar]
- Canarache, A.; Vintila, I.; Munteanu, I. Elsevier’s Dictionary of Soil Science: Definitions in English with French, German, and Spanish Word Translations; Elsevier BV: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Olness, A.; Clapp, C.E.; Liu, R.; Palazzo, A.J. Biosoilds and their effect on soil properties. In Handbook of Soil Conditioners; Wallace, A., Terry, R.E., Eds.; Marcel Dekker: New York, NY, USA, 1998; pp. 141–165. [Google Scholar]
- Skopp, J.; Janson, M.D.; Doran, J.W. Steady—State aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Mikheeva, I.V. Changes in the probability distributions of particle size fractions in chestnut soil of the Kulunda Steppe under the effect of natural and anthropogenic factors. Eurasian Soil Sci. 2010, 43, 1351–1361. [Google Scholar] [CrossRef]
- Carter, M.; Bentley, S.P. Soil Properties and Their Correlations, 2nd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Ball, B.C.; Campbell, D.J.; Hunter, E.A. Soil compactibility in relation to physical and organic properties at 156 sites in UK. Soil Tillage Res. 2000, 57, 83–91. [Google Scholar] [CrossRef]
- Arshad, M.A.; Martin, S. Identifying critical limits for soil quality indicators in agro ecosystems. Agric. Ecosyst. Environ. 2002, 88, 153–160. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Karlen, D.L. Bulk density as a soil quality indicator during conversion to no-tillage. Soil Tillage Res. 2004, 78, 143–149. [Google Scholar] [CrossRef]
- Paluszek, J. Criteria of evaluation of physical quality of Polish arable soils. Acta Agrophys. 2011, 191, 1–139. [Google Scholar]
- Pranagal, J.; Podstawka-Chmielewska, E.; Słowińska-Jurkiewicz, A. Influence on selected physical properties of a Haplic Podzol during a ten-year fallow period. Pol. J. Environ. Stud. 2007, 16, 875–880. [Google Scholar]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Sławiński, C. Hydrophysical characteristics of Polish mineral arable soils. Acta Agrophys. 2002, 79, 1–64. [Google Scholar]
- Pranagal, J. The Physical State of Selected Silty Soils of on the Lublin Region. Ph.D. Thesis, University of Life Sciences in Lublin, Lublin, Poland, 2011. [Google Scholar]
- Mayers, W.S.; Barrs, H.D. Roots in irrigated clay soil: Measurement techniques and responses to root zone conditions. Irrig. Sci. 1991, 12, 125–134. [Google Scholar]
- Cockroft, B.; Olsson, K.A. Case study of soil quality in south-eastern Australia: Management of structure for roots in duplex soils. In Soil Quality for Crop Production and Ecosystem Health; Gregorich, E.G., Carter, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 339–350. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonell, A.V. Effect of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Drewry, J.J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agric. Ecosyst. Environ. 2006, 114, 159–169. [Google Scholar] [CrossRef]
- Mueller, L.; Kay, B.D.; Been, B.; Hu, C.; Zhang, Y.; Wolff, M.; Eulenstein, F.; Schindler, U. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany. Soil Tillage Res. 2008, 103, 188–196. [Google Scholar] [CrossRef]
- Pranagal, J.; Woźniak, A. 30 years of wheat monoculture and reduced tillage and physical condition of Rendzic Phaeozem. Agric. Water Manag. 2021, 243, 106408. [Google Scholar] [CrossRef]
- Iversen, B.V.; Schjønning, P.; Poulsen, T.G.; Moldrup, P. In-situ, on-situ and laboratory measurements of soil air permeability: Boundary conditions a measurement scale. Soil Sci. 2001, 166, 97–106. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R. Air permeability of soil. In Encyclopedia of Soil Science; Lal, R., Ed.; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
- Kuncoro, P.H.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Su, L.; Wang, Q. Soil air permeability model based on soil physical basic parameters. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2015, 46, 125–130. [Google Scholar] [CrossRef]
- Poulsen, T.G.; Iversen, B.V.; Yamaguchi, T.; Moldrup, P.; Schjønning, P. Spatial and temporal dynamics of air permeability in a construction field. Soil Sci. 2001, 166, 153–162. [Google Scholar] [CrossRef]
- White, R.E. Principles and Practice of Soil Science, 4th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Pandian, K.; Subramaniayan, P.; Gnasekaran, P.; Chitraputhirapillai, S. Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Arch. Agron. Soil Sci. 2016, 62, 1293–1310. [Google Scholar] [CrossRef]
- Kutílek, M. Soil hydraulic properties as related to soil structure. Soil Tillage Res. 2004, 79, 175–184. [Google Scholar] [CrossRef]
- Leśny, J. Meteorology and Climatology Research. Acta Agrophys. 2010, 184, 1–263. [Google Scholar]
- Petrosyants, M.A.; Kislov, A.V.; Semenov, E.K. Principal concepts in meteorology and climatology. Vestnik Moskovskogo Universiteta S 5 Geografiya 2005, 1, 83–91. [Google Scholar]
- Usowicz, B.; Usowicz, Ł. Point measurements of soil water content and its spatial distribution in cultivated fields. Acta Agrophys. 2004, 4, 573–588. [Google Scholar]
- Amézketa, E. Soil aggregate stability: A review. J. Sustain. Agric. 1999, 14, 82–151. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Staricka, J.A.; Benoit, G.R. Freeze-drying effects on wet and dry soil aggregate stability. Soil Sci. Soc. Am. J. 1995, 59, 218–223. [Google Scholar] [CrossRef]
- Asgarzadeh, H.; Mosaddeghi, M.R.; Dexter, A.R.; Mahboubi, A.A.; Neyshabouri, M.R. Determination of soil available water for plants: Consistency between laboratory and field measurements. Geoderma 2014, 226, 8–20. [Google Scholar] [CrossRef]
- Olness, A.; Archer, D. Effect of organic carbon on available water in soil. Soil Sci. 2005, 170, 90–101. [Google Scholar] [CrossRef]
- Lu, S.G.; Sun, F.F.; Zong, Y.T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 2014, 114, 37–44. [Google Scholar] [CrossRef]
Sampling Date | Soil Layer (cm) | Soil Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PD | BD | TP | FAC | FAP | SM | FC | AWC | UWC | FC/TP | ||
0 | 0–10 10–20 | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS |
I | 0–10 10–20 | 0.047 0.039 | 0.137 0.158 | 0.1273 0.1582 | 0.1382 0.0831 | 26.32 NS | NS NS | 0.0447 0.0714 | 0.0683 0.0735 | 0.0096 0.0081 | 0.143 0.123 |
II | 0–10 10–20 | 0.048 0.037 | 0.283 0.191 | 0.1574 0.0071 | 0.1284 0.0634 | 31.86 NS | 0.0438 0.0381 | NS NS | NS NS | 0.0083 0.0098 | 0.139 0.117 |
III | 0–10 10–20 | 0.053 0.036 | 0.139 0.153 | NS NS | NS NS | 19.23 NS | NS NS | NS NS | 0.0617 0.0513 | 0.0078 0.0076 | NS 0.108 |
IV | 0–10 10–20 | 0.058 0.043 | NS NS | NS NS | NS NS | 18.11 NS | NS NS | NS 0.0491 | NS NS | 0.0073 0.0086 | NS NS |
V | 0–10 10–20 | 0.049 0.042 | NS NS | NS NS | NS NS | 33.64 30.94 | 0.0362 0.0413 | 0.0432 NS | NS NS | 0.0076 0.0073 | 0.105 NS |
VI | 0–10 10–20 | 0.051 0.042 | NS 0.153 | NS NS | 0.0452 NS | 34.11 16.29 | NS NS | NS NS | NS NS | NS 0.0066 | 0.128 NS |
VII | 0–10 10–20 | 0.041 0.043 | NS NS | NS NS | NS NS | 26.31 NS | NS NS | NS NS | NS NS | 0.0074 0.0068 | NS NS |
VIII | 0–10 10–20 | 0.043 0.041 | NS NS | NS NS | NS NS | 19.14 NS | NS NS | NS NS | NS NS | 0.0094 0.0073 | NS NS |
IX | 0–10 10–20 | 0.049 0.044 | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | NS NS | 0.0098 0.0084 | NS NS |
Treatments | Layers (cm) | Soil Physical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PD | BD | TP | FAC | FAP | SM | FC | AWC | UWC | FC/TP | ||
BC0 | 0–10 10–20 | 2.63b 2.63b | 1.59ab 1.66b | 0.394ab 0.370a | 0.143ab 0.120a | 19.1ab 7.7a | 0.083a 0.087a | 0.252ab 0.250ab | 0.213abc 0.211abc | 0.039a 0.040ab | 0.64a 0.68bc |
BC10 | 0–10 10–20 | 2.62b 2.62b | 1.57ab 1.63ab | 0.399ab 0.375a | 0.161ab 0.133ab | 30.1b 14.1a | 0.087a 0.089ab | 0.238a 0.242a | 0.197a 0.201a | 0.041abc 0.042abc | 0.60a 0.64a |
BC20 | 0–10 10–20 | 2.58a 2.59ab | 1.53ab 1.62ab | 0.408ab 0.377a | 0.142ab 0.108a | 30.2b 21.9ab | 0.104bc 0.108c | 0.266ab 0.269b | 0.221abc 0.223c | 0.045abc 0.046abc | 0.65b 0.71c |
BC30 | 0–10 10–20 | 2.57a 2.59ab | 1.48a 1.54ab | 0.426b 0.405ab | 0.171b 0.133ab | 46.5c 22.1ab | 0.103ab 0.113c | 0.254ab 0.272b | 0.207ab 0.225c | 0.047c 0.047c | 0.60a 0.66bc |
LSD0.05 | 0.0471 | 0.149 | 0.0493 | 0.0497 | 15.43 | 0.0207 | 0.0295 | 0.0211 | 0.0063 | 0.048 |
Properties | Treatments | LSD0.05 | |||
---|---|---|---|---|---|
BC0 | BC10 | BC20 | BC30 | ||
PD (Mg × m−3) | 2.63b | 2.62ab | 2.59a | 2.58a | 0.043 |
BD (Mg × m−3) | 1.63b | 1.60b | 1.57ab | 1.51a | 0.114 |
TP (m3 × m−3) | 0.382a | 0.387a | 0.393ab | 0.416b | 0.0242 |
FAC (m3 × m−3) | 0.131ab | 0.147ab | 0.125a | 0.152b | 0.0253 |
FAP (10−8 × m2 × Pa−1 × s−1) | 13.4a | 17.1ab | 26.1bc | 34.3c | 15.43 |
SM (kg × kg−1) | 0.085a | 0.088a | 0.106b | 0.108b | 0.0163 |
FC (m3 × m−3) | 0.251ab | 0.240a | 0.268b | 0.263ab | 0.0246 |
AWC (m3 × m−3) | 0.212ab | 0.199a | 0.222b | 0.216ab | 0.0203 |
UWC (m3 × m−3) | 0.040a | 0.042a | 0.046b | 0.047b | 0.0032 |
FC/TP | 0.66b | 0.62a | 0.68b | 0.63a | 0.0241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pranagal, J.; Kraska, P. 10-Years Studies of the Soil Physical Condition after One-Time Biochar Application. Agronomy 2020, 10, 1589. https://doi.org/10.3390/agronomy10101589
Pranagal J, Kraska P. 10-Years Studies of the Soil Physical Condition after One-Time Biochar Application. Agronomy. 2020; 10(10):1589. https://doi.org/10.3390/agronomy10101589
Chicago/Turabian StylePranagal, Jacek, and Piotr Kraska. 2020. "10-Years Studies of the Soil Physical Condition after One-Time Biochar Application" Agronomy 10, no. 10: 1589. https://doi.org/10.3390/agronomy10101589
APA StylePranagal, J., & Kraska, P. (2020). 10-Years Studies of the Soil Physical Condition after One-Time Biochar Application. Agronomy, 10(10), 1589. https://doi.org/10.3390/agronomy10101589