Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Soil and Climate
2.2. Vegetal Material and Organic Waste Composts
2.3. Experimental Design and Sampling
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Factors Involved in Increasing Potato Yield
4.2. Effect of the Treatments on the Yield and the Mineral Content in the Tubers
4.2.1. Yield
4.2.2. Macronutrients
- Nitrogen.
- 2.
- Phosphorus.
- 3.
- Potassium.
4.2.3. Micronutrients and Heavy Metals
- Iron
- 2.
- Manganese
- 3.
- Zinc
- 4.
- Copper
- 5.
- Lead
- 6.
- Chromium
- 7.
- Nickel
4.3. Bioavailability of Micronutrients and Heavy Metals
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jahanzad, E.; Barker, A.V.; Hashemi, M.; Sadeghpour, A.; Eaton, T. Improving yield and mineral nutrient concentration of potato tubers through cover cropping. Field Crops Res. 2017, 212, 45–51. [Google Scholar] [CrossRef]
- Kromann, P.; Valverde, F.; Alvarado, S.; Vélez, R.; Pisuña, J.; Potosí, B.; Taipe, A.; Caballero, D.; Cabezas, A.; Devaux, A. Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers? Plant Soil 2017, 411, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Isenring, R. Pesticides and the loss of biodiversity. In Pesticide Action Network Europe; Association for Conservation: London, UK, 2010; p. 26. [Google Scholar]
- IPC. International Potato Center. Potato Facts and Figures. Available online: http://cipotato.org/potato/facts/ (accessed on 21 March 2017).
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuire, S.; FAO; IFAD; WFP. The state of food insecurity in the world 2015: Meeting the 2015 international hunger targets: Taking stock of uneven progress: Rome FAO. Adv. Nutr. 2015, 6, 623–624. [Google Scholar] [CrossRef] [Green Version]
- Uauy, R.; Kain, J.; Mericqv Rojas, J.; Corvalán, C. Nutrition, child growth, and chronic disease prevention. Ann. Med. 2009, 40, 11–20. [Google Scholar] [CrossRef]
- UNICEF. The State of the World’s Children 2019. Children, Food and Nutrition: Growing Well in a Changing World. Available online: https://www.unicef.org/uzbekistan/en/reports/state-worlds-children-2019 (accessed on 6 October 2020).
- Stein, A.J. Global impacts of human mineral malnutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USA Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 340.
- U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 19. Nutrient Data Laboratory Home Page. 2006. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 26 April 2019).
- Hershey, D.R. Sir Albert Howard and the Indore Process. HortTechnology 1992, 2, 267–269. [Google Scholar] [CrossRef] [Green Version]
- García-Serrano, P.; Criado, S.R.; Marotta, J.J.L.; García, M.N. Guía Práctica de la. Fertilización Racional de los Cultivos en España. Parte II; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; ISBN 978-84-491-0997-3. Available online: https://www.mapa.gob.es/es/agricultura/publicaciones/01_FERTILIZACI%C3%93N(BAJA)tcm30-57890.pdf (accessed on 6 February 2019).
- Porras, E.; Burgos, G. Procedures for Sampling and Sample Preparation of Sweet Potato Roots and Potato Tubers for Mineral Analysis; International Potato Center (CIP) Global Program Genetics and Crop Improvement: Lima, Peru, 2014. [Google Scholar]
- Fernández, J.M.; Hernández, D.; Plaza, C.; Polo, A. Organic matter in degraded agricultural soils amended with composted and thermally-dried sewage sludges. Sci. Total Environ. 2007, 378, 75–80. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis Part 3: Chemical Methods; Bigham, J.M., Ed.; ASASSSA: Madison, WI, USA, 1996; pp. 475–489. [Google Scholar]
- Rhoades, J.D. Salinity. Electrical conductivity and total dissolved solids. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremmer, J.M. Nitrogen-Total. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- ITACYL. Atlas Agroclimático de Castilla y León. Junta de Castilla y León (JCyL) y el Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Subdirección de Infraestructuras Agrarias del Instituto Tecnológico Agrario de Castilla y León (ITACyL. Sistema de Información Geográfica de Parcelas Agrícolas (SIGPAC) y AEMET. 2016. Available online: http://atlas.itacyl.es (accessed on 6 February 2019).
- Mendoza, G.; Espinoza, J.; Mendoza, H.; Bonierbale, M. “Reiche” (CIP 388611.22) Variedad de papa precoz, resistente a virus, tolerante al calor y de buena calidad industrial. In Proceedings of the Ponencia: II Congreso Científico de Invierno, organizado por CONCYTEC, Universidad de Lima, Lima, Peru, 30 July–2 August 2003; p. 6. [Google Scholar]
- Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the Health Impact of Phosphorus in the Food Supply: Issues and Considerations. Adv. Nutr. 2014, 5, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaume Boixadera, M. Aplicación Agrícola de Residues Orgánicos; Universidad de Lleida: Lleida, Spain, 2001. [Google Scholar]
- Cai, A.; Xu, H.; Shao, X.; Zhu, P.; Zhang, W.; Xu, M.; Murphy, D.V. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System. PLoS ONE 2016, 11, e0152521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byju, G.; Anand, M.H.; Moorthy, S.N. Carbon and Nitrogen Mineralization and Humus Composition Following Municipal Solid Waste Compost Addition to Laterite Soils under Continuous Cassava Cultivation. Commun. Soil Sci. Plant Anal. 2014, 46, 148–168. [Google Scholar] [CrossRef]
- Cabalceta, G.; Saldias, M.; Alvarado, A. Absorción de nutrimentos en el cultivar de papa MNF-80. Agron. Costarric. 2005, 29, 107–123. [Google Scholar]
- Alvarado, A.; Iturriaga, I.; Smyth, J.T.; Ureña, J.M.; Portuguez, E. Efecto de la fertilización con fósforo sobre el rendimiento y la absorción de nutrimentos de la papa en un andisol de Juan Viñas, Costa Rica. Agron. Costarric. 2009, 33, 45–61. [Google Scholar]
- Correndo, A.A.; García, F.O. Concentración de nutrientes en planta como herramienta de diagnóstico: Cultivos extensivos. Archivo Agronómico No. 14. Informaciones Agronómicas de Hispanoamérica No. 5. IPNI Cono Sur. Buenos Aires. 2012. Available online: http://lacs.ipni.net/article/LACS-1155 (accessed on 24 September 2020).
- Mahamud, M.; Chowdhury, M.; Rahim, M.; Mohiuddin, K. Mineral nutrient contents of some potato accessions of USA and Bangladesh. J. Bangladesh Agric. Univ. 2016, 13, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.M.; Soratto, R.P.; Souza, E.F.C.; Job, A.L.G. Nutrient Uptake and Removal by Potato Cultivars as Affected by Phosphate Fertilization of Soils with Different Levels of Phosphorus Availability. Rev. Bras. Ciência Solo 2017, 41, e0160288. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Barrera, A.; Alvarez-Herrera, J.G.; Forero, A.F.; Salamanca, C.; Pinzón, L.P. Determination of potentially mineralizable nitrogen and the rate of nitrogen mineralization in organic materials. Temas Agrar. 2012, 17, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; A Gobi, T. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The Physiology of Potassium in Crop Production. Adv. Agron. 2014, 126, 203–233. [Google Scholar]
- World Health Organization. Guideline: Potassium Intake for Adults and Children. 2012. Available online: https://www.who.int/publications/i/item/9789241504829 (accessed on 6 February 2019).
- Gibson, R.S. A Historical Review of Progress in the Assessment of Dietary Zinc Intake as an Indicator of Population Zinc Status123. Adv. Nutr. 2012, 3, 772–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.R.; Haynes, K.G.; Moore, M.; Pavek, M.J.; Hane, D.C.; Love, S.L.; Novy, R.G.; Miller, J.C. Stability and Broad-Sense Heritability of Mineral Content in Potato: Iron. Am. J. Potato Res. 2010, 87, 390–396. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Yasmeen, S.; Akram, N.A.; Ashraf, M.; Mehmood, N. Potential health risk assessment of potato (Solanum tuberosum L.) grown on metal contaminated soils in the central zone of Punjab, Pakistan. Chemosphere 2017, 166, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Burgos, G.; Amorós, W.; Morote, M.; Stangoulis, J.; Bonierbale, M. Iron and zinc concentration of native Andean potato cultivars from a human nutrition prespective. J. Sci. Food Agric. 2007, 87, 668–675. [Google Scholar] [CrossRef]
- Burgos, G.; Auqui, S.; Amoros, W.; Salas, E.; Bonierbale, M. Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J. Food Compos. Anal. 2009, 22, 533–538. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011; p. 548. [Google Scholar]
- Baranowska, A.; Zarzecka, K.; Gugała, M.; Mystkowska, I. Contents of zinc, copper and manganese in potato tubers depending on the ways of application of the soil fertilizer ugmax. J. Ecol. Eng. 2017, 18, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012, 38, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Chitturi, R.; Baddam, V.R.; Prasad, L.; Prashanth, L.; Kattapagari, K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Health Sci. 2015, 4, 75. [Google Scholar] [CrossRef]
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutr. 2004, 7, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Dalir, N.; Tandy, S.; Gramlich, A.; Khoshgoftarmanesh, A.; Schulin, R. Effects of nickel on zinc uptake and translocation in two wheat cultivars differing in zinc efficiency. Environ. Exp. Bot. 2017, 134, 96–101. [Google Scholar] [CrossRef]
- Ortiz, R. La Biofortificación de Los Cultivos Para Combatir la Anemia y Las Deficiencias de Micronutrientes en el Perú; Programa Mundial de Alimentos (PMA): Lima, Peru, 2010; p. 39. [Google Scholar]
- Haynes, K.G.; Yencho, G.C.; Clough, M.E.; Henninger, M.R.; Sterrett, S.B. Genetic Variation for Potato Tuber Micronutrient Content and Implications for Biofortification of Potatoes to Reduce Micronutrient Malnutrition. Am. J. Potato Res. 2012, 89, 192–198. [Google Scholar] [CrossRef]
- André, C.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera, M.D.R.; Hoffmann, L.; Hausman, J.-F.; Larondelle, Y.; Evers, D. Andean Potato Cultivars (Solanum tuberosum L.) as a Source of Antioxidant and Mineral Micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- Escobedo Monge, M.F.; Barrado, E.; Vicente, C.A.; Del Río, M.P.R.; De Miguelsanz, J.M.M. Zinc Nutritional Status in Patients with Cystic Fibrosis. Nutrients 2019, 11, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.R.; Haynes, K.G.; Moore, M.; Pavek, M.J.; Hane, D.C.; Love, S.L.; Novy, R.G.; Miller, J.C. Stability and Broad-Sense Heritability of Mineral Content in Potato: Copper and Sulfur. Am. J. Potato Res. 2014, 91, 618–624. [Google Scholar] [CrossRef]
- Pozzatti, M.; Borges, A.R.; Dessuy, M.B.; Vale, M.G.R.; Welz, B. Determination of cadmium, chromium and copper in vegetables of the Solanaceae family using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Anal. Methods 2017, 9, 329–337. [Google Scholar] [CrossRef]
- Myint, Z.W.; Oo, T.H.; Thein, K.Z.; Tun, A.M.; Saeed, H. Copper deficiency anemia: Review article. Ann. Hematol. 2018, 97, 1527–1534. [Google Scholar] [CrossRef]
- Best, K.; McCoy, K.; Gemma, S.; DiSilvestro, R.A. Copper enzyme activities in cystic fibrosis before and after copper supplementation plus or minus zinc. Metabolism 2004, 53, 37–41. [Google Scholar] [CrossRef]
- Tadesse, B.; Atlabachew, M.; Mekonnen, K.N. Concentration levels of selected essential and toxic metals in potato (Solanum tuberosum L.) of West Gojjam, Amhara Region, Ethiopia. SpringerPlus 2015, 4, 514. [Google Scholar] [CrossRef] [Green Version]
- Jalali, M.; Meyari, A. Accumulation of Heavy Metals in Potatoes Grown on Calcareous Soils of the Hamedan, Western Iran. Soil Sediment Contam. Int. J. 2016, 25, 365–377. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Pevicharova, G.; Ivanov, K. Effect of organic amendments on heavy metals uptake by potato plants Australia. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 84–87. [Google Scholar]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- FAO; OMS. Codex Alimentarius. Normas Internacionales de los Alimentos. Norma General Para Los Contaminantes y Las Toxinas Presentes en Los Alimentos y Piensos. CODEX STAN 193-1995. Enmienda 2015. Roma, 2015 y 61; FAO/OMS: Rome, Italy, 2015. [Google Scholar]
- Gomes, M.A.D.C.; Hauser-Davis, R.A.; Suzuki, M.S.; Vitória, A.P. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 2017, 140, 55–64. [Google Scholar] [CrossRef]
- Hayat, S.; Khalique, G.; Irfan, M.; Wani, A.S.; Tripathi, B.N.; Ahmad, A. Physiological changes induced by chromium stress in plants: An overview. Protoplasma 2011, 249, 599–611. [Google Scholar] [CrossRef]
- Stasinos, S.; Nasopoulou, C.; Tsikrika, C.; Zabetakis, I. The Bioaccumulation and Physiological Effects of Heavy Metals in Carrots, Onions, and Potatoes and Dietary Implications for Cr and Ni: A Review. J. Food Sci. 2014, 79, 765–780. [Google Scholar] [CrossRef] [Green Version]
- Paiva, L.B.; De Oliveira, J.G.; Azevedo, R.A.; Ribeiro, D.R.; Da Silva, M.G.; Vitória, A.P. Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ. Exp. Bot. 2009, 65, 403–409. [Google Scholar] [CrossRef]
- Guevara, P.; Montes, L.E. Espacialización de la Concentración de Metales Pesados Cromo, Zinc y Plomo en el Complejo Industrial Fabrilfame y Propuesta de Remediación de Suelos; Ingeniería del Medio Ambiente, Departamento Ciencias de la Tierra: Sangolquí, Ecuador, 2014; p. 100. [Google Scholar]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Lavres, J.; Franco, G.C.; Câmara, G.M.D.S. Soybean Seed Treatment with Nickel Improves Biological Nitrogen Fixation and Urease Activity. Front. Environ. Sci. 2016, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Freitas, D.S.; Rodak, B.W.; Reis, A.R.; Reis, F.D.B.; De Carvalho, T.S.; Schulze, J.; Carneiro, M.A.C.; Guilherme, L.R.G. Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes. Front. Plant Sci. 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Parlak, K.U. Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS Wagening. J. Life Sci. 2016, 76, 1–5. [Google Scholar] [CrossRef]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Freitas, H.; Zhang, C. Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Front. Plant Sci. 2016, 7, 918. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, Y.; Wang, H. Hazardous metals in animal manure and their changes from 1990 to 2010 in China. Toxicol. Environ. Chem. 2014, 96, 1346–1355. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil contamination with cadmium, consequences and remeditation using organic amendments. Sci. Total Environ. 2017, 601, 1591–1605. [Google Scholar] [CrossRef]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef]
Physicochemical Properties | Soil |
---|---|
Texture (USDA) [12] | Loam |
Sand (g kg−1DW) | 380 |
Silt (g kg−1DW) | 420 |
Clay (g kg−1DW) | 200 |
Carbonates (g kg−1DW) | 101 |
pH (H2O) | 7.4 |
Electrical Conductivity (dS m−1) | 0.3 |
Nitrogen (g kg−1DW) | 0.9 |
Organic matter (g kg−1DW) | 18.0 |
Total organic carbon (g kg−1DW) | 10.4 |
Cation Exchange Capacity (cmol(+)kg−1) | 23.0 |
Assimilable macronutrients (mg kg−1DW) | |
Phosphorus | 54 |
Potassium | 888 |
Calcium | 1830 |
Magnesium | 130 |
Sodium | 14 |
Heavy Metals (mg kg−1DW) | |
Iron | 4860 |
Manganese | 48 |
Zinc | 10 |
Copper | 3 |
Lead | 3 |
Cadmium | <0.2 |
Chromium | 4 |
Nickel | 3 |
Variety/Clone | Pedigree | Species Involved | Country of Origin |
---|---|---|---|
Agria | Quarta × Semlo | Ststub × Ststub | Germany |
Jaerla | Sirtema × MPI 19268 | Ststub × Ststub | Holland |
Monalisa | Bierma A 1-287 × Colmo | Ststub × Ststub | Netherlands |
Clone A7677 | Aphrodite × IPC ICA | Ststub × Stsand (Stsand × PL) | Holland-Peru (IPC) |
Compost of Municipal Solid Waste with Leguminous Straw (MSWC) | |||||||
---|---|---|---|---|---|---|---|
1998 | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 | |
Ashes (g kg−1 DW) | 690.0 | 683.0 | 703.0 | 658.0 | 708.0 | 711.0 | 698.0 |
pH (H2O) | 7.0 | 6.9 | 7.1 | 7.1 | 7.3 | 8.3 | 7.1 |
Electrical conductivity (dS m−1) | 2.8 | 2.3 | 1.4 | 2.1 | 2.3 | 2.9 | 2.1 |
Nitrogen (g kg−1 DW) | 18.9 | 19.3 | 21.3 | 29.6 | 18.7 | 18.4 | 21.9 |
Total organic carbon (g kg−1 DW) | 170.0 | 154.0 | 194.0 | 210.0 | 177.0 | 147.0 | 211.0 |
Carbon/Nitrogen ratio | 8.9 | 7.9 | 9.1 | 9.0 | 9.4 | 7.9 | 9.6 |
Total macronutrient (g kg−1 DW) | |||||||
Phosphorus | 9.7 | 9.3 | 9.8 | 7.9 | 6.8 | 6.4 | 10.1 |
Potassium | 16.9 | 20.1 | 17.9 | 18.8 | 6.3 | 4.1 | 6.6 |
Calcium | 46.4 | 48.6 | 44.4 | 73.6 | 71.6 | 68.4 | 73.3 |
Magnesium | 1.8 | 1.7 | 1.3 | 3.4 | 3.8 | 4.3 | 4.4 |
Sodium | 3.1 | 2.6 | 0.8 | 1.3 | 1.1 | 0.7 | 0.8 |
Heavy Metals (mg kg−1 DW) | |||||||
Iron | 14,787 | 13,361 | 9874 | 15,889 | 15,448 | 15,489 | 15,380 |
Manganese | 250 | 263 | 291 | 468 | 353 | 306 | 474 |
Zinc | 718 | 694 | 706 | 203 | 197 | 200 | 198 |
Copper | 468 | 448 | 307 | 110 | 124 | 108 | 69 |
Lead | 399 | 316 | 210 | 108 | 120 | 123 | 40 |
Cadmium | 1 | <0.2 | 1 | <0.2 | <0.2 | <0.2 | 1 |
Chromium | 136 | 128 | 213 | 76 | 63 | 68 | 66 |
Nickel | 124 | 104 | 81 | 86 | 60 | 68 | 25 |
Compost of Mixed Cow Manure with Leguminous Straw (CMC) | |||||||
---|---|---|---|---|---|---|---|
1998 | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 | |
Ashes (g kg−1 DW) | 623.0 | 687.0 | 711.0 | 740.0 | 630.0 | 780.0 | 730.0 |
pH (H2O) | 8.3 | 8.1 | 8.0 | 8.4 | 8.1 | 8.3 | 8.0 |
Electrical conductivity (dS m−1) | 3.6 | 2.8 | 2.1 | 2.6 | 2.3 | 2.8 | 2.1 |
Nitrogen (g kg−1 DW) | 16.4 | 16.6 | 15.3 | 14.7 | 15.6 | 18.8 | 17.9 |
Total organic carbon (g kg−1 DW) | 71.0 | 160.0 | 143.0 | 128.0 | 151.0 | 164.0 | 159.0 |
Carbon/Nitrogen ratio | 10.4 | 9.6 | 9.3 | 8.7 | 9.7 | 8.7 | 8.9 |
Total macronutrient (g kg−1 DW) | |||||||
Phosphorus | 1.1 | 1.3 | 2.3 | 2.9 | 2.1 | 1.9 | 1.3 |
Potassium | 3.1 | 3.3 | 3.2 | 16.6 | 14.7 | 16.8 | 16.3 |
Calcium | 7.7 | 7.4 | 7.8 | 19.8 | 11.9 | 18.6 | 17.8 |
Magnesium | 1.1 | 1.1 | 1.2 | 3.8 | 3.3 | 3.9 | 3.6 |
Sodium | 0.6 | 0.8 | 0.4 | 1.6 | 0.9 | 1.1 | 0.4 |
Heavy Metals (mg kg−1 DW) | |||||||
Iron | 2023 | 2827 | 1897 | 2993 | 1266 | 2446 | 2897 |
Manganese | 303 | 287 | 288 | 329 | 278 | 283 | 297 |
Zinc | 71 | 78 | 86 | 133 | 87 | 64 | 91 |
Copper | 144 | 193 | 213 | 64 | 66 | 68 | 63 |
Lead | 2.7 | 11.0 | 6.0 | 7.0 | 6.3 | 4.0 | 3.3 |
Cadmium | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Chromium | 63 | 65 | 67 | 70 | 59 | 70 | 68 |
Nickel | 25 | 28 | 26 | 28 | 23 | 17 | 19 |
Compost of Mixed Chicken Manure with Leguminous Straw (ChMC) | |||||||
---|---|---|---|---|---|---|---|
1998 | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 | |
Ashes (g kg−1 DW) | 628.0 | 630.0 | 713.0 | 729.0 | 698.0 | 741.0 | 736 |
pH (H2O) | 6.8 | 6.7 | 6.4 | 6.9 | 6.8 | 6.7 | 6.3 |
Electrical conductivity (dS m−1) | 2.7 | 2.8 | 2.3 | 3.8 | 2.3 | 2.8 | 2.1 |
Nitrogen (g kg−1 DW) | 17.4 | 20.4 | 29.6 | 38.9 | 28.4 | 33.6 | 38.6 |
Total organic carbon (g kg−1 DW) | 184.0 | 178.0 | 287.0 | 331.0 | 231.7 | 291.3 | 329.4 |
Carbon/Nitrogen ratio | 10.6 | 8.6 | 9.7 | 8.5 | 8.2 | 8.7 | 9.8 |
Total macronutrient (g kg−1 DW) | |||||||
Phosphorus | 4.1 | 3.3 | 3.8 | 6.3 | 5.1 | 4.4 | 5.8 |
Potassium | 2.6 | 2.4 | 2.8 | 17.8 | 14.1 | 17.8 | 14.9 |
Calcium | 3.4 | 7.6 | 6.8 | 8.7 | 6.6 | 5.1 | 6.3 |
Magnesium | 2.9 | 2.3 | 2.8 | 3.9 | 3.1 | 2.8 | 3.6 |
Sodium | 0.6 | 0.4 | 0.3 | 0.5 | 0.6 | 0.3 | 0.3 |
Heavy Metals (mg kg−1 DW) | |||||||
Iron | 4900 | 3871 | 4300 | 5489 | 5997 | 5857 | 5400 |
Manganese | 267 | 294 | 290 | 324 | 291 | 336 | 343 |
Zinc | 79 | 69 | 46 | 40 | 58 | 46 | 59 |
Copper | 29 | 40 | 51 | 43 | 48 | 54 | 57 |
Lead | 19 | 16 | 12 | 19 | 13 | 11 | 9 |
Cadmium | <0.2 | <0.2 | 1.0 | <0.2 | <0.2 | <0.2 | <0.2 |
Chromium | 33 | 36 | 31 | 34 | 38 | 43 | 47 |
Nickel | 50 | 49 | 54 | 25 | 24 | 23 | 26 |
Compost of Mixed Sheep with Leguminous Straw (SMC) | |||||||
---|---|---|---|---|---|---|---|
1998 | 2001 | 2004 | 2007 | 2010 | 2013 | 2016 | |
Ashes (g kg−1 DW) | 687.0 | 704.0 | 721.0 | 698.0 | 713.0 | 716.0 | 721.0 |
pH (H2O) | 7.8 | 7.3 | 7.8 | 7.6 | 7.7 | 7.7 | 7.4 |
Electrical conductivity (dS m−1) | 2.3 | 3.4 | 2.1 | 2.8 | 2.3 | 2.9 | 2.1 |
Nitrogen (g kg−1 DW) | 10.3 | 11.3 | 11.3 | 9.1 | 10.6 | 10.9 | 10.8 |
Total organic carbon (g kg−1 DW) | 100.0 | 101.0 | 96.0 | 110.0 | 104.0 | 101.0 | 103.0 |
Carbon/Nitrogen ratio | 9.7 | 9.0 | 9.7 | 9.8 | 9.8 | 9.3 | 9.5 |
Total macronutrient (g kg−1 DW) | |||||||
Phosphorus | 1.3 | 1.2 | 1.1 | 1.1 | 1.4 | 1.3 | 1.4 |
Potassium | 2.8 | 2.9 | 2.6 | 3.3 | 2.8 | 3.1 | 3.6 |
Calcium | 7.8 | 5.8 | 7.6 | 9.1 | 7.8 | 6.4 | 7.3 |
Magnesium | 1.6 | 0.8 | 0.9 | 0.9 | 1.1 | 0.8 | 1.4 |
Sodium | 0.3 | 0.3 | 0.4 | 0.2 | 0.3 | 0.3 | 0.4 |
Heavy Metals (mg kg−1 DW) | |||||||
Iron | 3413 | 3024 | 4303 | 6948 | 4354 | 4659 | 4813 |
Manganese | 283 | 316 | 221 | 306 | 289 | 290 | 304 |
Zinc | 63 | 68 | 184 | 157 | 123 | 108 | 114 |
Copper | 51 | 54 | 63 | 68 | 50 | 58 | 61 |
Lead | 19 | 18 | 20 | 23 | 19 | 16 | 21 |
Cadmium | <0.2 | 1 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Chromium | 21 | 19 | 23 | 18 | 19 | 23 | 21 |
Nickel | 26 | 23 | 33 | 26 | 28 | 23 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobedo-Monge, M.A.; Aparicio, S.; Escobedo-Monge, M.F.; Marugán-Miguelsanz, J.M. Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L. Agronomy 2020, 10, 1575. https://doi.org/10.3390/agronomy10101575
Escobedo-Monge MA, Aparicio S, Escobedo-Monge MF, Marugán-Miguelsanz JM. Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L. Agronomy. 2020; 10(10):1575. https://doi.org/10.3390/agronomy10101575
Chicago/Turabian StyleEscobedo-Monge, María Antonieta, Santiago Aparicio, Marlene Fabiola Escobedo-Monge, and José Manuel Marugán-Miguelsanz. 2020. "Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L." Agronomy 10, no. 10: 1575. https://doi.org/10.3390/agronomy10101575
APA StyleEscobedo-Monge, M. A., Aparicio, S., Escobedo-Monge, M. F., & Marugán-Miguelsanz, J. M. (2020). Long-Term Effects of the Application of Urban Waste Compost and Other Organic Amendments on Solanum tuberosum L. Agronomy, 10(10), 1575. https://doi.org/10.3390/agronomy10101575