Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status
Abstract
:1. Introduction
2. Iodine in Foodstuffs
3. Risk of Iodine-Induced Hyperthyroidism
4. Iodine Biofortification in Plants
5. Influence of Soil and Agronomic Factors on Iodine Biofortification
6. Simultaneous Biofortification with Selenium Could Improve Global Thyroid Status
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leung, A.M.; Braverman, L.E.; Pearce, E.N. History of U.S. Iodine Fortification and Supplementation. Nutrition 2012, 4, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Bürgi, H.; Supersaxo, Z.; Selz, B. Iodine deficiency diseases in Switzerland one hundred years after Theodor Kocher’s survey: A historical review with some new goitre prevalence data. Eur. J. Endocrinol. 1990, 123, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global Iodine Status in 2011 and Trends over the Past Decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.H. Iodine Status in Europe in 2014. Eur. Thyroid. J. 2014, 3, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, K.; Skeaff, S. Iodine fortification: Why, when, what, how, and who? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 618–624. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Jørgensen, T.; Perrild, H.; Knudsen, N.; Krejbjerg, A.; Laurberg, P.; Pedersen, I.B.; Bjergved, L.; Ovesen, L. Mandatory iodine fortification of bread and salt increases iodine excretion in adults in Denmark–A 11-year follow-up study. Clin. Nutr. 2014, 33, 1033–1040. [Google Scholar] [CrossRef]
- Franke, K.; Meyer, U.; Wagner, H.; Flachowsky, G. Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source. J. Dairy Sci. 2009, 92, 4514–4523. [Google Scholar] [CrossRef] [Green Version]
- Charlton, K.; Yeatman, H.; Lucas, C.J.; Axford, S.; Gemming, L.; Houweling, F.; Goodfellow, A.; Ma, G. Poor Knowledge and Practices Related to Iodine Nutrition during Pregnancy and Lactation in Australian Women: Pre- and Post-Iodine Fortification. Nutrition 2012, 4, 1317–1327. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Update on iodine status worldwide. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Bath, S.C.; Walter, A.; Taylor, A.; Wright, J.; Rayman, M.P. Iodine deficiency in pregnant women living in the South East of the UK: The influence of diet and nutritional supplements on iodine status. Br. J. Nutr. 2014, 111, 1622–1631. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, T.; Farkas, I. 2032 iskoláskorú gyermek pajzsmirigy-ultrahangvizsgálatából levonható néhány tanulság: A jódellátottság és az attól független tényezők szerepe a golyva kialakulásában. Gyermekgyógyászat 2003, 54, 55–62. [Google Scholar]
- Hetzel, B.S. Iodine and neuropsychological development. J. Nutr. 2000, 130, 493S–495S. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- WHO. Recommended Iodine Levels in Salt and Guidelines for Monitoring Their Adequacy and Effectiveness; World Health Organization: Geneva, Switzerland, 1996; p. 12. [Google Scholar]
- European Commision. Discussion Paper on the Setting of Maximum and Minimum Amounts for Vitamins and Minerals in Foodstuffs; Health and Consumer Protection Directorate-General European Communities: Brussels, Belgium, 2006. [Google Scholar]
- Šeda, M.; Švehla, J.; Trávniček, J.; Kroupová, V.; Konečný, R.; Fiala, K.; Svozilová, M.; Krhovjaková, J. The effect of volcanic activity of the Eyjafjallajökul volcano on iodine concentration in precipitation in the Czech Republic. Geochem. 2012, 72, 279–281. [Google Scholar] [CrossRef]
- Goindi, G.; Karmarkar, M.G.; Kapil, U.; Jagannathan, J. Estimation of losses of iodine during different cooking procedures. Asia Pac. J. Clin. Nutr. 1995, 4, 225–227. [Google Scholar] [PubMed]
- Meinhardt, A.-K.; Müller, A.; Burcza, A.; Greiner, R. Influence of cooking on the iodine content in potatoes, pasta and rice using iodized salt. Food Chem. 2019, 301, 125293. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders; World Health Organisation: Geneva, Switzerland, 2014; p. 44. [Google Scholar]
- Hejtmánková, A.; Vejdová, M.; Trnková, E. Stanovení jodu v biologickém materiálu metodou HPLC s elektrochemickým detektorem. Chemické Listy. 2005, 99, 657–660. [Google Scholar]
- Dahl, L.; Opsahl, J.A.; Meltzer, H.M.; Julshamn, K. Iodine concentration in Norwegian milk and dairy products. Br. J. Nutr. 2003, 90, 679–685. [Google Scholar] [CrossRef]
- Pearce, E.N.; Pino, S.; He, X.; Bazrafshan, H.R.; Lee, S.L.; Braverman, L.E. Sources of Dietary Iodine: Bread, Cows’ Milk, and Infant Formula in the Boston Area. J. Clin. Endocrinol. Metab. 2004, 89, 3421–3424. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.M.; Avram, A.M.; Brenner, A.V.; Duntas, L.H.; Ehrenkranz, J.; Hennessey, J.V.; Lee, S.L.; Pearce, E.N.; Roman, S.A.; Stagnaro-Green, A.; et al. Potential Risks of Excess Iodine Ingestion and Exposure: Statement by the American Thyroid Association Public Health Committee. Thyroid 2015, 25, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, I.B.; Laurberg, P.; Knudsen, N.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Rasmussen, L.B. Increase in Incidence of Hyperthyroidism Predominantly Occurs in Young People after Iodine Fortification of Salt in Denmark. J. Clin. Endocrinol. Metab. 2006, 91, 3830–3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, A.M.; Braverman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2013, 10, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teas, J.; Pino, S.; Critchley, A.; Braverman, L.E. Variability of iodine content in common commercially available edible seaweeds. Thyroid 2004, 14, 836–841. [Google Scholar] [CrossRef]
- Leung, A.M.; Pearce, E.N.; Braverman, L.E. Iodine Content of Prenatal Multivitamins in the United States. New Engl. J. Med. 2009, 360, 939–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidiard, H. Iodine in the reclaimed upland soils of a farm in the Exmoor National Park, Devon, U.K. and its impact on livestock health. Appl. Geochem. 1995, 10, 85–95. [Google Scholar] [CrossRef]
- Umaly, R.C.; Poel, L.W. Effects of Various Concentrations of Iodine as Potassium Iodide on the Growth of Barley, Tomato and Pea in Nutrient Solution Culture. Ann. Bot. 1970, 34, 919–926. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Kubová, J. Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Arch. Agron. Soil Sci. 2017, 64, 46–57. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Bujdoš, M.; Kubová, J. Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.). Water Air Soil Pollut. 2016, 227, 407. [Google Scholar] [CrossRef]
- Cakmak, I.; Prom-U-Thai, C.; Guilherme, L.R.G.; Rashid, A.; Hora, K.H.; Yazici, A.; Savasli, E.; Kalayci, M.; Tutus, Y.; Phuphong, P.; et al. Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil 2017, 418, 319–335. [Google Scholar] [CrossRef]
- Tonacchera, M.; Dimida, A.; De Servi, M.; Frigeri, M.; Ferrarini, E.; De Marco, G.; Grasso, L.; Agretti, P.; Piaggi, P.; Aghini-Lombardi, F.; et al. Iodine Fortification of Vegetables Improves Human Iodine Nutrition: In Vivo Evidence for a New Model of Iodine Prophylaxis. J. Clin. Endocrinol. Metab. 2013, 98, E694–E697. [Google Scholar] [CrossRef]
- Jiang, X.M.; Cao, X.Y.; Jiang, J.Y.; Tai, M.; James, D.W.; Rakeman, M.A.; Zhi-Hong, D.; Mamette, M.; Amette, K.; Ming-Li, Z.; et al. Dynamics of Environmental Supplementation of Iodine: Four Years’ Experience of Iodination of Irrigation Water in Hotien, Xinjiang, China. Arch. Environ. Heal. Int. J. 1997, 52, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-Y.; Jiang, X.-M.; Kareem, A.; Dou, Z.-H.; Rakeman, M.; Zhang, M.L.; Ma, T.; O’Donnell, K.; Delong, N.; Delong, G. Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in XinJiang, China. Lancet 1994, 344, 107–110. [Google Scholar] [CrossRef]
- Ren, Q.; Fan, J.; Zhang, Z.; Zheng, X.; Delong, G.R. An environmental approach to correcting iodine deficiency: Supplementing iodine in soil by iodination of irrigation water in remote areas. J. Trace Elements Med. Biol. 2008, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kiferle, C.; Gonzali, S.; Holwerda, H.T.; Ibaceta, R.R.; Perata, P. Tomato fruits: A good target for iodine biofortification. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Iodine Status Worldwide: WHO Global Database on Iodine Deficiency; WHO: Geneva, Switzerland, 2004. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Bujdoš, M.; Matulová, M. Influence of physicochemical properties of various soil types on iodide and iodate sorption. Chemosphere 2019, 214, 168–175. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Grossl, P.R.; Cook, K. Iodine toxicity in a plant-solution system with and without humic acid. Plant Soil 2005, 269, 141–150. [Google Scholar] [CrossRef]
- Smoleń, S.; Ledwożyw-Smoleń, I.; Sady, W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant Soil 2015, 402, 129–143. [Google Scholar] [CrossRef]
- Li, R.; Li, D.-W.; Liu, H.-P.; Hong, C.-L.; Song, M.-Y.; Dai, Z.-X.; Liu, J.-W.; Zhou, J.; Weng, H. Enhancing iodine content and fruit quality of pepper ( Capsicum annuum L.) through biofortification. Sci. Hortic. 2017, 214, 165–173. [Google Scholar] [CrossRef]
- Li, R.; Liu, H.-P.; Hong, C.-L.; Dai, Z.-X.; Liu, J.-W.; Zhou, J.; Hu, C.-Q.; Weng, H.-X. Iodide and iodate effects on the growth and fruit quality of strawberry. J. Sci. Food Agric. 2016, 97, 230–235. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Grossl, P.R. Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant Soil 1999, 212, 133–141. [Google Scholar] [CrossRef]
- Blasco, B.; Rios, J.J.; Cervilla, L.; Ruiz, J.; Romero, L.; Sánchez-Rodrigez, E. Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Ann. Appl. Biol. 2008, 152, 289–299. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W.; Ledwożyw-Smoleń, I.; Strzetelski, P.; Liszka-Skoczylas, M.; Rożek, S. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 2014, 159, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Voogt, W.; Holwerda, H.T.; Khodabaks, R. Biofortification of lettuce (Lactuca sativa L.) with iodine: The effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric. 2010, 90, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-L.; Weng, H.; Qin, Y.-C.; Yan, A.-L.; Xie, L.-L. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev. 2008, 28, 575–583. [Google Scholar] [CrossRef]
- Hong, C.-L.; Weng, H.-X.; Yan, A.-L.; Islam, E.-U. The fate of exogenous iodine in pot soil cultivated with vegetables. Environ. Geochem. Heal. 2008, 31, 99–108. [Google Scholar] [CrossRef]
- Weng, H.; Hong, C.; Xia, T.; Bao, L.; Liu, H.; Li, D. Iodine biofortification of vegetable plants—An innovative method for iodine supplementation. Chin. Sci. Bull. 2013, 58, 2066–2072. [Google Scholar] [CrossRef] [Green Version]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Meuser, H.; Härtling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef]
- Caffagni, A.; Arru, L.; Meriggi, P.; Milc, J.; Perata, P.; Pecchioni, N. Iodine Fortification Plant Screening Process and Accumulation in Tomato Fruits and Potato Tubers. Commun. Soil Sci. Plant Anal. 2011, 42, 706–718. [Google Scholar] [CrossRef]
- Weng, H.-X.; Weng, J.-K.; Yan, A.-L.; Hong, C.-L.; Yong, W.-B.; Qin, Y.-C. Increment of Iodine Content in Vegetable Plants by Applying Iodized Fertilizer and the Residual Characteristics of Iodine in Soil. Biol. Trace Element Res. 2008, 123, 218–228. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.-G.; Huang, Y.Z.; Zhang, M.; Song, J.L. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant Soil 2006, 289, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.-X.; Liu, H.-P.; Li, D.; Ye, M.; Pan, L.; Xia, T.-H. An innovative approach for iodine supplementation using iodine-rich phytogenic food. Environ. Geochem. Heal. 2014, 36, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Caffagni, A.; Pecchioni, N.; Meriggi, P.; Bucci, V.; Sabatini, E.; Acciarri, N.; Ciriaci, T.; Pulcini, L.; Felicioni, N.; Beretta, M.; et al. Iodine uptake and distribution in horticultural and fruit tree species. Ital. J. Agron. 2012, 7, 32. [Google Scholar] [CrossRef]
- Zanirato, V.; Mayerle, M.; Pizzoli SpA. Method of Enriching Crops with Iodine and Crops thus Obtained. International Patent PCT/EP2009/050142, 1 July 2009. [Google Scholar]
- Zhu, Y.-G.; Huang, Y.-Z.; Hu, Y.; Liu, Y.-X. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: Effects of iodine species and solution concentrations. Environ. Int. 2003, 29, 33–37. [Google Scholar] [CrossRef]
- Weng, H.-X.; Yan, A.-L.; Hong, C.-L.; Xie, L.-L.; Qin, Y.-C.; Cheng, C.Q. Uptake of Different Species of Iodine by Water Spinach and Its Effect to Growth. Biol. Trace Element Res. 2008, 124, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Landini, M.; Gonzali, S.; Perata, P. Iodine biofortification in tomato. J. Plant Nutr. Soil Sci. 2011, 174, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Wachi, T.; Yoshihira, K.; Nakagawa, T.; Ishikawa, A.; Takagi, D.; Tezuka, A.; Yoshida, H.; Yoshida, S.; Sekimoto, H.; et al. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Reiller, P.E.; Mercier-Bion, F.; Gimenez, N.; Barré, N.; Miserque, F. Iodination of humic acid samples from different origins. Radiochim. Acta 2006, 94, 739. [Google Scholar] [CrossRef] [Green Version]
- Smoleń, S.; Wierzbińska, J.; Sady, W.; Kołton, A.; Wiszniewska, A.; Liszka-Skoczylas, M. Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci. Hortic. 2015, 188, 89–96. [Google Scholar] [CrossRef]
- Leyva, R.; Sánchez-Rodríguez, E.; Ríos, J.J.; Rubio-Wilhelmi, M.M.; Romero, L.; Ruiz, J.M.; Blasco, B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 2011, 181, 195–202. [Google Scholar] [CrossRef]
- Blasco, B.; Rios, J.J.; Leyva, R.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Ruiz, J.M.; Romero, L. Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants? Biol. Trace Element Res. 2010, 142, 831–842. [Google Scholar] [CrossRef]
- Osuna, H.T.G.; Mendoza, A.B.; Morales, C.R.; Rubio, E.M.; Star, J.V.; Ruvalcaba, R.M. Iodine Application Increased Ascorbic Acid Content and Modified the Vascular Tissue in Opuntia Ficus-indica L. Pak. J. Botany 2014, 46, 127–134. [Google Scholar]
- Smoleń, S.; Sady, W. Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Sci. Hortic. 2012, 143, 176–183. [Google Scholar] [CrossRef]
- Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2008, 52, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Gärtner, R.; Gasnier, B.C.H.; Dietrich, J.W.; Krebs, B.; Angstwurm, M.W.A. Selenium Supplementation in Patients with Autoimmune Thyroiditis Decreases Thyroid Peroxidase Antibodies Concentrations. J. Clin. Endocrinol. Metab. 2002, 87, 1687–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negro, R.; Greco, G.; Mangieri, T.; Pezzarossa, A.; Dazzi, D.; Hassan, H. The Influence of Selenium Supplementation on Postpartum Thyroid Status in Pregnant Women with Thyroid Peroxidase Autoantibodies. J. Clin. Endocrinol. Metab. 2007, 92, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.B.; Schomburg, L.; Köhrle, J.; Pedersen, I.B.; Hollenbach, B.; Hög, A.; Ovesen, L.; Perrild, H.; Laurberg, P. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur. J. Endocrinol. 2011, 164, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gashu, D.; Stoecker, B.J.; Adish, A.; Haki, G.D.; Bougma, K.; E Aboud, F.; Marquis, G.S. Association of serum selenium with thyroxin in severely iodine-deficient young children from the Amhara region of Ethiopia. Eur. J. Clin. Nutr. 2016, 70, 929–934. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Czernicka, M.; Halka, M.; Kęska, K.; Sady, W. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata). Front. Plant Sci. 2016, 7, 1553. [Google Scholar] [CrossRef] [Green Version]
- Lyons, G.H.; Genc, Y.; Soole, K.L.; Stangoulis, J.C.R.; Liu, F.; Graham, R.D. Selenium increases seed production in Brassica. Plant Soil 2008, 318, 73–80. [Google Scholar] [CrossRef]
- Lyons, G. Biofortification of Cereals with Foliar Selenium and Iodine Could Reduce Hypothyroidism. Front. Plant. Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
Region | Severe Iodine Deficiency [<20 µg∙L−1] | Moderate Iodine Deficiency [20–49 µg∙L−1] | Mild Iodine Deficiency [50–99 µg∙L−1] | Optimal Iodine Nutrition [100–199 µg∙L−1] | Risk of IIH in Susceptible Groups [200–299 µg∙L−1] | Risk of Adverse Health Consequences [≥300 µg∙L−1] | No Data |
---|---|---|---|---|---|---|---|
Africa | 0 | 6 | 10 | 13 | 2 | 2 | 15 |
Asia | 1 | 4 | 12 | 12 | 0 | 0 | 13 |
Europe | 0 | 1 | 15 | 14 | 0 | 0 | 11 |
Latin America and the Caribbean | 0 | 1 | 1 | 3 | 3 | 3 | 14 |
Northern America | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Oceania | 0 | 1 | 2 | 1 | 0 | 0 | 12 |
Total | 1 | 13 | 40 | 43 | 5 | 5 | 60 |
Median UI [µg L−1] | Iodine Intake | Nutrition |
---|---|---|
˂20 | Insufficient | Severe iodine deficiency |
20201349 | Insufficient | Moderate iodine deficiency |
50–99 | Insufficient | Mild iodine deficiency |
100–199 | Adequate | Optimal iodine nutrition |
200–299 | More than adequate | Risk of iodine-induced hyperthyroidism in susceptible groups |
>300 | Excessive | Risk of adverse health consequences |
Food | Iodine Concentration | Source |
---|---|---|
Milk | 242 mg∙kg−1 | [19] |
Yogurt | 266 mg∙kg−1 | [19] |
Cottage cheese | 490 mg∙kg−1 | [19] |
Cheese | 265 mg∙kg−1 | [19] |
Poultry meat | 130 mg∙kg−1 | [19] |
Beef meat | 113 mg∙kg−1 | [19] |
Fish | 315 mg∙kg−1 | [19] |
Eggs | 50–100 mg∙kg−1 | [20] |
Bread | 2.2–584 µg per slice | [21] |
Processed meat products | 50–400 mg∙kg−1 | [19] |
Supplement/Food | Amount of Iodine | Source |
---|---|---|
Kelp | 16–8165 μg∙g−1 | [25] |
Prenatal vitamins | Non-prescription 11–610 per daily serving Prescription 26–220 μg per daily serving | [26,27] |
Iodinated contrast | 13,500 μg per CT scan | [24] |
Saturated solution of potassium iodide | 50,000 μg per drop | [24] |
Crop | Iodine Dosage | Applied Iodine Form | Type of Application | Iodine Content Per 100 g of Fresh Weight (µg) | % of RDI (Recommended Daily Intake) | Source |
---|---|---|---|---|---|---|
Carrot | 10–150 mg∙kg−1 | KI | Soil pot | 0–5000 | 0–3333 | [48] |
Celery | 10–150 mg∙kg−1 | KI | Soil pot | 500–16,000 | 333–10,667 | [49] |
Cucumber | 12–150 mg∙m−2 | Kelp fertilizer | Soil | 30–120 | 20–80 | [50] |
Lettuce | 0.5–2 kg∙ha−1 | KIO3 | Foliar application | 45–300 | 30–200 | [51] |
Pepper | 10–150 mg∙kg−1 | KI | Soil pot | 100–500 | 67–333 | [49] |
Potato | 0.05–0.5% | KIO3 | Irrigation water | 1870–3400 | 1247–2267 | [52] |
Radish | 10–150 mg∙kg−1 | Kelp fertilizer | Soil pot | 100–1300 | 67–867 | [53] |
Strawberry | 0.25–5 mg∙L−1 | KI, KIO3 | Hydroponic | 400–4133 | 400–2755 | [43] |
Spinach | 0.5–2 mg∙kg−1 | KIO3 | Soil pot | 6–824 | 4–549 | [54] |
Tomato | 12–64 mg∙dm−3 | KI | Soil pot | 200–1000 | 133–667 | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duborská, E.; Urík, M.; Šeda, M. Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy 2020, 10, 1574. https://doi.org/10.3390/agronomy10101574
Duborská E, Urík M, Šeda M. Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy. 2020; 10(10):1574. https://doi.org/10.3390/agronomy10101574
Chicago/Turabian StyleDuborská, Eva, Martin Urík, and Martin Šeda. 2020. "Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status" Agronomy 10, no. 10: 1574. https://doi.org/10.3390/agronomy10101574
APA StyleDuborská, E., Urík, M., & Šeda, M. (2020). Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy, 10(10), 1574. https://doi.org/10.3390/agronomy10101574