Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Essential Oils
2.3. Estimated Antimicrobial Activity of Lemon, Orange and Mandarin Oils
2.4. Antiradical Scavenging Activity of Essential Oils
2.5. Preparation of Emulsions for Coating
2.6. Application of Emulsions to Strawberry
2.7. Physical Parameters of Strawberry
2.7.1. Weight Loss
2.7.2. Decay Percentage
2.7.3. Surface Color
2.7.4. Fruit Firmness
2.7.5. Soluble Solid Content (SSC)
2.7.6. Sensory Assessment
2.7.7. Respiration Rate
2.8. Chemical Parameters of Strawberry
2.8.1. Titratable Acidity and Ascorbic Acid
2.8.2. Total Phenolic Compounds (TPC)
2.8.3. Total Anthocyanin
2.8.4. Antioxidant Activity
2.8.5. Enzymes Activity
Polyphenol Oxidase Activity
Catalase
2.8.6. Microbiological Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Antimicrobial Characterization of Essential Oils
3.1.1. Antiradical Scavenging Activity of Essential Oils and their Components
3.1.2. Antimicrobial Activity of Essential Oils
3.2. Physicochemical and Antimicrobial Properties of Strawberry Fruits
3.2.1. Weight Loss
3.2.2. Decay Percentage
3.2.3. Firmness
3.2.4. Soluble Solid Content (SSC)
3.2.5. Surface Color
3.2.6. Respiration Rate
3.2.7. Total Anthocyanin Content
3.2.8. Total Phenolic Compounds (TPC)
3.2.9. Titratable Acidity
3.2.10. Ascorbic Acid
3.2.11. Antioxidant Capacity
3.2.12. Antioxidant Enzymes (Catalase and Polyphenol Oxidase)
3.2.13. Sensory Assessment
3.2.14. Microbial Study
3.3. Correlation Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parra-Palma, C.; Morales-Quintana, L.; Ramos, P.C. Phenolic content, color development, and pigment−related gene expression: A comparative analysis in different cultivars of strawberry during the ripening process. Agronomy 2020, 10, 588. [Google Scholar] [CrossRef] [Green Version]
- Martínez, K.; Ortiz, M.; Arrieta, A.R.A.; Castañeda, C.G.; Valencia, M.E.; Tovar, C.D. The effect of edible chitosan coatings incorporated with thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Wills, R.B.; Golding, J. Advances in Postharvest Fruit and Vegetable Technology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Aloui, H.; Khwaldia, K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1080–1103. [Google Scholar] [CrossRef]
- Sheikh, M.; Safiuddin, A.; Khan, Z.; Rizvi, R.; Mahmood, I. Antibacterial and antifungal potential of some medicinal plants against certain phytopathogenic micro-organisms. Arch. Phytopathol. Plant. Prot. 2013, 46, 1070–1080. [Google Scholar] [CrossRef]
- Chanthaphon, S.; Chanthachum, S.; Hongpattarakere, T. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin J. Sci. Technol. 2008, 30, 125–131. [Google Scholar]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Laranjo, M.; Fernandez-Leon, A.M.; Potes, M.E.; Agulheiro-Santos, A.C.; Elias, M. Use of Essential Oils in Food Preservation. In Antimicrobial Research: Novel bioknowledge and Educational Programs; Méndez-Vilas, A., Ed.; Microbiology Book Series #6; Formatex Research Center: Badajoz, Spain, 2017; pp. 177–188. [Google Scholar]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus essential oils (ceos) and their applications in Food: An overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- López-Palestina, C.U.; Aguirre-Mancilla, C.L.; Raya-Pérez, J.C.; Ramírez-Pimentel, J.G.; Gutiérrez-Tlaque, J.; Fuentes, A.D.H. The effect of an edible coating with tomato oily extract on the physicochemical and antioxidant properties of garambullo (myrtillocactus geometrizans) fruits. Agronomy 2018, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Kahramanoğlu, I. Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Sci. Hortic. 2019, 256, 108527. [Google Scholar] [CrossRef]
- Rahmawati, D.; Chandra, M.; Santoso, S.; Puteri, M.G. Application of lemon peel essential oil with edible coating agent to prolong shelf life of tofu and strawberry. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1803, p. 020037. [Google Scholar]
- García, A.V.; Burgos, N.; Jiménez, A.; Garrigós, M. Natural pectin polysaccharides as edible coatings: A review. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef] [Green Version]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components: A review. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Alvarez, C.; González, A.N.; Rodríguez, J.; Castillo, S.L.; Leos-Rivas, C.; Báez-González, J. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA J. Food 2017, 15, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Kizil, S.; Hasimi, N.; Tolan, V.; Kilinc, E.; Yuksel, U. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turk. J. Field Crops 2010, 15, 148–153. [Google Scholar]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Rokaya, P.R.; Baral, D.R.; Gautam, D.M.; Shrestha, A.K.; Paudyal, K.P. Effect of postharvest treatments on quality and shelf life of mandarin (Citrus reticulata Blanco). Am. J. Plant. Sci. 2016, 7, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Del-Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M. Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chem. 2005, 91, 751–756. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Titratable Acidity 942.15. AOAC Official Methods of Analysis, 15th ed.; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Tonu, T.; Ulvi, M.; Lech, S. Strawberry anthocyanin determination by pH differential spectroscopic method- how to get true results? Acta Sci. Pol. Hortorum Cultus 2014, 13, 35–47. [Google Scholar]
- Sanchez-Moreno, C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I.; El-Nouby, M.; Ismail, R.I.A.; Taktak, N.E.M. Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int. J. Fruit Sci. 2016, 17, 1–20. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Chu, Y.; Gao, C.; Liu, X.; Zhang, N.; Xu, T.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT Food Sci. Technol. 2020, 122, 109054. [Google Scholar] [CrossRef]
- Junior, M.R.M.; e Silva, T.A.; Franchi, G.C.; Nowill, A.E.; Pastore, G.M.; Hyslop, S.; Junior, G.C.F. Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil. Food Chem. 2009, 116, 8–12. [Google Scholar] [CrossRef]
- Boudries, H.; Loupassaki, S.; Ladjal Ettoumi, Y.; Souagui, S.; Bachir Bey, M.; Nabet, N.; Chikhoune, A.; Madani, K.; Chibane, M. Chemical profile, antimicrobial and antioxidant activities of Citrus reticulata and Citrus clementina (L.) essential oils. Int. Food Res. J. 2017, 24, 1782–1792. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Chemical composition of mandarin (c. reticulata L.), grapefruit (c. paradisi L.), lemon (c. limon L.) and orange (c. sinensis L.) essential oils. J. Essent. Oil Bear. Plants 2009, 12, 236–243. [Google Scholar] [CrossRef]
- Cholke, P.B.; Bhor, A.K.; Shete, A.M.; Sonawane, R.K. Extraction and Gc-Ms analysis of orange (Citrus sinensis) peel oil. Life Sci. Inform. 2017, 2, 41. [Google Scholar] [CrossRef]
- Misharina, T.A.; Samusenko, A.L. Antioxidant properties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures. Appl. Biochem. 2008, 44, 438–442. [Google Scholar] [CrossRef]
- Dhital, R.; Mora, N.B.; Watson, D.G.; Kohli, P.; Choudhary, R. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT 2018, 97, 124–134. [Google Scholar] [CrossRef]
- Poverenov, E.; Danino, S.; Horev, B.; Granit, R.; Vinokur, Y.; Rodov, V. Layerby-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate–chitosan combination. Food Bioproc. Tech. 2014, 7, 1424–1432. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Zhu, B.; Chen, H.; Chi, H.; Li, L.; Qin, Y.; Xue, J. The quality evaluation of postharvest strawberries stored in nano-ag packages at refrigeration temperature. Polymers 2018, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxyl propylmethyl cellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Etemadipoor, R.; Ramezanian, A.; Dastjerdi, A.M.; Shamili, M. The potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava (Psidium guajava L.) fruit. Sci. Hortic. 2019, 251, 101–107. [Google Scholar] [CrossRef]
- Barreto, T.A.; Andrade, S.C.A.; Maciel, J.F.; Arcanjo, N.M.O.; Madruga, M.S.; Meireles, B.; Cordeiro, Â.M.T.; Souza, E.L.; Magnani, M. A Chitosan coating containing essential oil from origanum vulgare l. to control postharvest mold infections and keep the quality of cherry tomato fruit. Front. Microbiol. 2016, 7, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloui, H.; Khwaldia, K.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Hamdi, M.; Restuccia, C. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. Int. J. Food Microbiol. 2014, 170, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Severino, R.; Ferrari, G.; Vu, K.D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control. 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Krochta, J.M. Edible packaging materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef]
- Jin, P.; Wang, S.Y.; Wang, C.Y.; Zheng, Y. Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chem. 2011, 124, 262–270. [Google Scholar] [CrossRef]
- Marín, I.; Sayas-Barberá, E.; Viuda-Martos, M.; Navarro, C.; Sendra, E. Chemical composition, antioxidant and antimicrobial activity of essential oils from organic fennel, parsley, and lavender from Spain. Foods 2016, 5, 18. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, Y. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Meng, X.; Li, B.; Liu, J.; Tian, S. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Ali, M.R.; Darwish, O.S.; Rogers, H.J. Impact of salicylic acid, abscisic acid, and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. J. Berry Res. 2019, 9, 333–348. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Adzahan, N.M. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol. Technol. 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Pelayo, C.; Ebeler, S.E.; Kader, A. Postharvest life and flavor quality of three strawberry cultivars kept at 5 °C in air or air+20 kPa CO2. Postharvest Biol. Technol. 2003, 27, 171–183. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 1990, 29, 1097–1102. [Google Scholar] [CrossRef]
- Bhat, R.; Stamminger, R. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci. Technol. Int. 2015, 21, 354–363. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; Gonzalez-Aguilar, G.A. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technol. Biotechnol. 2007, 45, 166–173. [Google Scholar]
- Shin, Y.; Ryu, J.-A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Yang, F.; Li, H.; Li, F.; Xin, Z.; Zhao, L.; Zheng, Y.; Hu, Q. Effect of Nano-Packing on Preservation Quality of Fresh Strawberry (Fragaria ananassa Duch. cv Fengxiang) during Storage at 4 °C. J. Food Sci. 2010, 75, C236–C240. [Google Scholar] [CrossRef]
- Leong, L.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kuskoski, E.M.; Asuero, A.G.; García-Parilla, M.C.; Troncoso, A.M.; Fett, R. Actividad antioxidante depigmentos antociánicos. Ciênc. Tecnol. Aliment. 2004, 24, 691–693. [Google Scholar] [CrossRef] [Green Version]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Dave, R.K.; Rao, T.V.R.; Nandane, A.S. Improvement of post-harvest quality of pear fruit with optimized composite edible coating formulations. J. Food Sci. Technol. 2017, 54, 3917–3927. [Google Scholar] [CrossRef] [PubMed]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Perdones, Á.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 2014, 36, 9–19. [Google Scholar] [CrossRef]
- De Martino, L.; De Feo, V.; Formisano, C.; Mignola, E.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (link) ietswaart growing wild in Campania (Southern Italy). Molecules 2009, 14, 2735–2746. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.; Alves, D.; Neves, O.; Silva, J.; Gibbs, P.; Teixeira, P. Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control 2010, 21, 227–230. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Alsanius, B.W. Cassia oil for controlling plant and human pathogens on fresh strawberries. Food Control 2012, 28, 157–162. [Google Scholar] [CrossRef]
Items | Mandarin | Lemon | Orange |
---|---|---|---|
Refractive index at 20 °C | 1.470–1.476 | 1.473–1.479 | 1.474–1.478 |
Specific gravity at 20 °C | 0.842–0.850 | 0.845–0.858 | 0.840–0.855 |
D-limonene | 93–96% | 59–80% | 85–96% |
Total aldehyde | 1.1–3.0% (Decanal) | 1.99–3.66% (Citral) | 0.66% |
Inhibition Zone (mm) ±SD in Different Microorganism Strains | |||||||||
---|---|---|---|---|---|---|---|---|---|
Eos Type | Eos ppm | S.A. | P.A. | B.S. | S.T. | A.N. | A.F. | L. | K. |
50 | 15 ± 0.000 | 0 | 0 | 9 ± 0.031 | 0 | 5 ± 0.014 | 5 ± 0.004 | 6 ± 0.002 | |
Lemon | 100 | 16 ± 0.010 | 10 ± 0.023 | 0 | 9 ± 0.000 | 0 | 8 ± 0.020 | 7 ± 0.002 | 7 ± 0.001 |
150 | 17 ± 0.000 | 12 ± 0.001 | 0 | 10 ± 0.002 | 5 ± 0.000 | 8 ± 0.016 | 7 ± 0.000 | 9 ± 0.005 | |
200 | 17 ± 0.002 | 14 ± 0.000 | 0 | 15 ± 0.005 | 7 ± 0.002 | 9 ± 0.001 | 10 ± 0.005 | 10 ± 0.001 | |
50 | 10 ± 0.030 | 5 ± 0.000 | 5 ± 0.004 | 0 | 0 | 0 | 0 | 7 ± 0.001 | |
Orange | 100 | 15 ± 0.050 | 5 ± 0.021 | 7 ± 0.025 | 0 | 0 | 0 | 0 | 7 ± 0.042 |
150 | 15 ± 0.001 | 6 ± 0.004 | 9 ± 0.001 | 0 | 0 | 0 | 6 ± 0.000 | 9 ± 0.002 | |
200 | 16 ± 0.003 | 7 ± 0.001 | 9 ± 0.007 | 0 | 0 | 0 | 7 ± 0.003 | 9 ± 0.010 | |
50 | 5 ± 0.005 | 0 | 0 | 0 | 0 | 0 | 5 ± 0.000 | 5 ± 0.005 | |
Mandarin | 100 | 9 ± 0.001 | 0 | 0 | 0 | 0 | 0 | 5 ± 0.010 | 5 ± 0.021 |
150 | 9 ± 0.002 | 5 ± 0.015 | 0 | 0 | 0 | 0 | 5 ± 0.041 | 5 ± 0.033 | |
200 | 14 ± 0.000 | 5 ± 0.024 | 5 ± 0.001 | 0 | 0 | 0 | 5 ± 0.003 | 5 ± 0.002 |
Treatments | Storage Duration (Days) | ||||||
---|---|---|---|---|---|---|---|
0 | 4 | 7 | 10 | 14 | 18 | ||
Color | L | 5.00a | 5.00a | 4.80 ± 0.45a | 4.10 ± 0.89a | 4.40 ± 0.55a | 3.90 ± 0.22ab |
O | 5.00a | 5.00a | 5.00a | 4.40 ± 0.55a | 4.10 ± 0.55a | 3.70 ± 0.27b | |
M | 5.00a | 5.00a | 4.90 ± 0.22a | 4.50 ± 0.71a | 4.80 ± 0.45a | 4.10 ± 0.22a | |
C | 5.00a | 5.00a | 4.00b | 4.00 ± 0.61a | 3.70 ± 0.27b | 2.70 ± 0.27c | |
Texture | L | 5.00a | 5.00a | 4.90 ± 0.22a | 4.40 ± 0.55a | 3.90 ± 0.22ab | 3.30 ± 0.45a |
O | 5.00a | 5.00a | 4.80 ± 0.45a | 4.60 ± 0.55a | 4.10 ± 0.55a | 3.20 ± 0.27a | |
M | 5.00a | 5.00a | 5.00a | 4.80 ± 0.45a | 4.40 ± 0.55a | 3.40 ± 0.22a | |
C | 5.00a | 5.00a | 4.00b | 3.70 ± 0.27b | 3.50b | 2.20 ± 0.45b | |
Flavor | L | 5.00a | 5.00a | 5.00a | 5.00a | 4.40 ± 0.22a | 3.90 ± 0.22a |
O | 5.00a | 5.00a | 5.00a | 5.00a | 4.40 ± 0.22a | 3.90 ± 0.22a | |
M | 5.00a | 5.00a | 5.00a | 5.00a | 4.30 ± 0.27a | 3.90 ± 0.22a | |
C | 5.00a | 5.00a | 5.00a | 4.60 ± 0.42b | 3.40 ± 0.65b | 2.40 ± 0.42b | |
Appearance | L | 5.00a | 5.00a | 4.60 ± 0.55a | 4.80 ± 0.45a | 3.90 ± 0.22a | 3.90 ± 0.22a |
O | 5.00a | 5.00a | 4.80 ± 0.45a | 4.40 ± 0.55a | 4.00a | 3.40 ± 0.55ab | |
M | 5.00a | 5.00a | 4.80 ± 0.45a | 4.50 ± 0.50a | 4.00a | 3.50 ± 0.61ab | |
C | 5.00a | 5.00a | 4.20 ± 0.45a | 4.30 ± 0.67a | 3.10 ± 0.22b | 3.00 ± 0.50b | |
General acceptance | L | 5.00a | 5.00a | 4.30 ± 0.67a | 4.10 ± 0.55a | 3.80 ± 0.27a | 3.40 ± 0.22ab |
O | 5.00a | 5.00a | 4.50 ± 0.50a | 4.50 ± 0.50a | 3.50a | 3.10 ± 0.42b | |
M | 5.00a | 5.00a | 4.60 ± 0.55a | 4.60 ± 0.42a | 3.90 ± 0.22a | 3.70 ± 0.27a | |
C | 5.00a | 5.00a | 3.90 ± 0.65a | 3.00a | 2.30 ± 0.45b | 1.80 ± 0.67c |
Positive correlation | ||||||||
Antioxidant activity of strawberry | Firmness | Vit. C | Acidity | TPC | Catalase | |||
0.41 * | 0.50 * | 0.533 ** | 0.97 ** | 0.98 ** | ||||
Negative correlation | ||||||||
Antioxidant activity of strawberry | Weight Loss | Decay | SSC | Respiration | Polyphenol | Total Count | Mold& Yeast | Coliform |
−0.76 ** | −0.83 ** | −0.62 ** | −0.88 ** | −0.94 ** | −0.92 ** | −0.90 ** | −0.88 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, S.A.; Abdeldaym, E.A.; Ali, M.R.; Mohamed, R.M.; Bob, R.I.; Abdelgawad, K.F. Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage. Agronomy 2020, 10, 1466. https://doi.org/10.3390/agronomy10101466
Shehata SA, Abdeldaym EA, Ali MR, Mohamed RM, Bob RI, Abdelgawad KF. Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage. Agronomy. 2020; 10(10):1466. https://doi.org/10.3390/agronomy10101466
Chicago/Turabian StyleShehata, Said A., Emad A. Abdeldaym, Marwa R. Ali, Reda M. Mohamed, Rwotonen I. Bob, and Karima F. Abdelgawad. 2020. "Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage" Agronomy 10, no. 10: 1466. https://doi.org/10.3390/agronomy10101466
APA StyleShehata, S. A., Abdeldaym, E. A., Ali, M. R., Mohamed, R. M., Bob, R. I., & Abdelgawad, K. F. (2020). Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage. Agronomy, 10(10), 1466. https://doi.org/10.3390/agronomy10101466