Challenges of Alginate-Based Cast Films in Plastic-Free Food Packaging Applications: An Overview
Abstract
1. Introduction
2. Alginate Properties and Applications
3. Physical Properties
3.1. Mechanical Properties
3.1.1. Influence of Plasticizers and Biopolymer Blends
| Plasticizer/Blend | Effect on Tensile Strength | Effect on Young’s Modulus | Effect on Elongation at Break | Reference |
|---|---|---|---|---|
| Glycerol | Initially ↓ with time ↑ brittleness due to loss of glycerol | Initially ↓ with time ↑ brittleness due to loss of glycerol | [45,47,64,65,66] | |
| Oils | ↓ by 56% (1.5% OE) | ↑ by 68.2% (1.5% OE) | [68] | |
| Tributyl citrate | ↑ by 42.4% compared to Glycerol | ↓ by 45.5% compared to Glycerol | [10] | |
| Pectin | ↓ by 5% (from 61.3 MPa with 0% Pectin to ~58 MPa with 20% Pectin) | ↓ by 8% (from 3.68 GPa with 0% Pectin to ~3.4 GPa with 20% Pectin) | ↑ by 67% (from 6% with 0% Pectin to ~10% with 20% Pectin) | [72] |
| Chitosan | ↑ by ~18% (from 37.57 MPa with 0% Chitosan to 44.28 MPa with 50% Chitosan) | ↓ by ~60% (from 4 774 MPa with 0% Chitosan to 1 900 MPa with 50% chitosan) | ↓ by ~95% (from 90.55% with 0% Chitosan to 4.36% with 50% Chitosan) | [73] |
| Potato starch | ↑ by 15% (0.25% starch) compared to pure alginate films | [15] |
3.1.2. Influence of Crosslinking
3.1.3. Influence of Drying Conditions, Mixing Speeds, Molecular Weight and Added Proteins
| Parameter | Effect on Tensile Strength | Effect on Young’s Modulus | Effect on Elongation at Break | Reference |
|---|---|---|---|---|
| drying conditions | ↑ 25–90 °C drying temperature (27.20 to 46.37 MPa) | ↑ 25–90 °C drying temperature (9.5 to 20.3 MPa) | [66] | |
| molecular weight | → 160.000–320.000 g/mol | [86] | ||
| aqueous wheat proteins | ↓ 0–8% protein (11.7 ± 2.1 to 2.0 ± 0.2) | ↑ 0–8% protein (17.3 ± 2.1 to 61.6 ± 12) | [87] | |
| mixing speed | ↑ 6.1–6.2% (86.9% at 2000 rpm and 92.3% at 5100 rpm) | [85] |
3.2. Barrier Properties
3.2.1. Influence of Plasticizers and Biopolymer Blends
3.2.2. Influence of Crosslinking
| Crosslinking Type | Effect on WVP | Effect on OP | Reference |
|---|---|---|---|
| Ca2+-crosslinked | ↓ (3.96 × 10−6 g·m/(m2·day·Pa) from uncrosslinked film to 2.84 × 10−6 g·m/(m2·day·Pa) of 5% CaCl2 (w/v)) | [29] | |
| CaHPO4-crosslinked | ↓ (6.62 × 10−7 g·m/(m2·day·Pa) from uncrosslinked film to 3.79 × 103 g·m/(m2·day·Pa)) | ↓ (1.86 × 10−13 g·m/(m2·day·Pa) from uncrosslinked film to 1.06 × 10−13 g·m/(m2·day·Pa)) | [55] |
3.3. Long-Term Stability
4. Possible Applications of Alginate Films in the Food Industry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WVP | Water Vapor Permeability |
| OP | Oxygen Permeability |
| WVTR | Water Vapor Transmission Rate |
| TS | Tensile Strength |
| Ca2+ | Calcium Ion |
| CaCl2 | Calcium Chloride |
| CaHPO4 | Calcium Hydrogen Phosphate |
| CaCO3 | Calcium Carbonate |
| PEG | Polyethylene Glycol |
| OEO | Oregano Essential Oil |
| EVOH | Ethylene Vinyl Alcohol |
| MW | Molecular Weight |
| DSC | Differential Scanning Calorimetry |
| SEM | Scanning Electron Microscopy |
| PET | Polyethylene Terephthalate |
| NaAlg | Sodium Alginate |
| CaAlg | Calcium Alginate |
| SA | Sodium Alginate |
| PPWR | Packaging and Packaging Waste Regulation (EU) |
| SUPD | Single-Use Plastics Directive (EU) |
| MOSH | Mineral Oil Saturated Hydrocarbons |
| UV | Ultraviolet |
| LAB | Lactic Acid Bacteria |
| WCO | Watercress Oil |
| ZnO | Zinc Oxide |
| RH | Relative Humidity |
| MPa | Megapascal |
References
- Ibrahim, N.I.; Shahar, F.S.; Sultan, M.T.H.; Shah, A.U.M.; Safri, S.N.A.; Mat Yazik, M.H. Overview of Bioplastic Introduction and Its Applications in Product Packaging. Coatings 2021, 11, 1423. [Google Scholar] [CrossRef]
- Detzl, A.; Bodrogi, F.; Kauertz, B.; Bick, C.; Welle, F.; Schmid, M.; Schmitz, K.; Müller, K.; Käb, H. Biobasierte Kunststoffe als Verpackung von Lebensmitteln; IFEU: Heidelberg/Berlin, Germany, 2018. [Google Scholar]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Brahma, S.; Mackay, J.; Cao, C.; Aliakbarian, B. The Role of Smart Packaging System in Food Supply Chain. J. Food Sci. 2020, 85, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Mohanty, A.K.; Misra, M. Microplastics in Ecosystems: Their Implications and Mitigation Pathways. Environ. Sci. Adv. 2022, 1, 9–29. [Google Scholar] [CrossRef]
- Mamun, A.A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in Human Food Chains: Food Becoming a Threat to Health Safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Kontominas, M.G. Use of Alginates as Food Packaging Materials. Foods 2020, 9, 1440. [Google Scholar] [CrossRef]
- Gheorghita, R.; Gutt, G.; Amariei, S. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings 2020, 10, 166. [Google Scholar] [CrossRef]
- Paixão, L.C.; Lopes, I.A.; Barros Filho, A.K.D.; Santana, A.A. Alginate Biofilms Plasticized with Hydrophilic and Hydrophobic Plasticizers for Application in Food Packaging. J. Appl. Polym. Sci. 2019, 136, 48263. [Google Scholar] [CrossRef]
- Li, N.; Cheng, Y.; Li, Z.; Yue, T.; Yuan, Y. An Alginate-Based Edible Coating Containing Lactic Acid Bacteria Extends the Shelf Life of Fresh Strawberry (Fragaria × Ananassa Duch.). Int. J. Biol. Macromol. 2024, 274, 133273. [Google Scholar] [CrossRef]
- Hiremani, V.D.; Gasti, T.; Masti, S.P.; Malabadi, R.B.; Chougale, R.B. Polysaccharide-Based Blend Films as a Promising Material for Food Packaging Applications: Physicochemical Properties. Iran. Polym. J. 2022, 31, 503–518. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, J.; Zhao, L.; Zhang, J.; Wang, F. Applications of Alginate as a Functional Food Ingredient. In Biopolymers for Food Design; Elsevier: Amsterdam, The Netherlands, 2018; pp. 409–429. ISBN 978-0-12-811449-0. [Google Scholar]
- Reakasame, S.; Boccaccini, A.R. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules 2018, 19, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Harper, B.A.; Barbut, S.; Smith, A.; Marcone, M.F. Mechanical and Microstructural Properties of “Wet” Alginate and Composite Films Containing Various Carbohydrates. J. Food Sci. 2015, 80, E84–E92. [Google Scholar] [CrossRef] [PubMed]
- Sutehall, S.; Muniz-Pardos, B.; Bosch, A.N.; Di Gianfrancesco, A.; Pitsiladis, Y.P. Sports Drinks on the Edge of a New Era. Curr. Sports Med. Rep. 2018, 17, 112–116. [Google Scholar] [CrossRef]
- Amran, F.I.S.; Zamri, A.I.; Arifin, H.R.; Shafrina, A.-H. Active Food Packaging from Alginate-Based Film Containing Onion Peel Extract (Allium cepa). J. Biochem. Microbiol. Biotechnol. 2024, 12, 5–8. [Google Scholar] [CrossRef]
- Montefusco, A.V.; Izzi, M.; Calia, D.; Pugliese, A.; Sportelli, M.C.; Cioffi, N.; Picca, R.A. Alginate Films Embedding Electrosynthesized ZnO Nanostructures for Food Packaging Applications. In Proceedings of the 2024 IEEE 24th International Conference on Nanotechnology (NANO), Gijon, Spain, 8 July 2024; pp. 283–286. [Google Scholar]
- Tapia, M.S.; Rojas-Graü, M.A.; Rodríguez, F.J.; Ramírez, J.; Carmona, A.; Martin-Belloso, O. Alginate- and Gellan-Based Edible Films for Probiotic Coatings on Fresh-Cut Fruits. J. Food Sci. 2007, 72, E190–E196. [Google Scholar] [CrossRef]
- Zinina, O.; Merenkova, S.; Galimov, D. Development of Biodegradable Alginate-Based Films with Bioactive Properties and Optimal Structural Characteristics with Incorporation of Protein Hydrolysates. Sustainability 2023, 15, 15086. [Google Scholar] [CrossRef]
- Janik, W.; Nowotarski, M.; Shyntum, D.Y.; Banaś, A.; Krukiewicz, K.; Kudła, S.; Dudek, G. Antibacterial and Biodegradable Polysaccharide-Based Films for Food Packaging Applications: Comparative Study. Materials 2022, 15, 3236. [Google Scholar] [CrossRef] [PubMed]
- Sudha, P.N. Industrial Applications of Marine Biopolymers; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2017; ISBN 978-1-4987-3148-5. [Google Scholar]
- Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto Joseph, G.; Mageshwaran, G.; Durairaj, R.B. Scaling up Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, X.; Xu, C.; Wang, L.; Xia, Y. Progress in the Mechanical Enhancement of Hydrogels: Fabrication Strategies and Underlying Mechanisms. J. Polym. Sci. 2022, 60, 2525–2542. [Google Scholar] [CrossRef]
- He, J.; Yang, S.; Goksen, G.; Cong, X.; Rizwan Khan, M.; Zhang, W. Functionalized Pectin/Alginate Food Packaging Films Based on Metal-Phenol Networks. Food Biosci. 2024, 58, 103635. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Wang, L.; Campanella, O.; Patel, B.; Lu, L. Preparation and Sealing Processing of Sodium Alginate Based Blending Film. Math. Probl. Eng. 2015, 2015, 895637. [Google Scholar] [CrossRef]
- Rhim, J.-W. Physical and Mechanical Properties of Water Resistant Sodium Alginate Films. LWT—Food Sci. Technol. 2004, 37, 323–330. [Google Scholar] [CrossRef]
- Liling, G.; Di, Z.; Jiachao, X.; Xin, G.; Xiaoting, F.; Qing, Z. Effects of Ionic Crosslinking on Physical and Mechanical Properties of Alginate Mulching Films. Carbohydr. Polym. 2016, 136, 259–265. [Google Scholar] [CrossRef]
- Korde, P.K. Korde An Analytical Study of Packaging Industries with Reference to Chakan Midc Area. Int. J. Eng. Sci. Manag. Res. 2016, 3, 25–47. [Google Scholar] [CrossRef]
- Ankiel, M.; Grzybowska-Brzezińska, M. Informative Value of Packaging as a Determinant of Food Purchase. Mark. Sci. Res. Organ. 2020, 36, 31–44. [Google Scholar] [CrossRef]
- Schmidt, S.; Godwin Schmidt, B.S. The Role of Packaging in Logistics Processes—Impact on Sustainable Logistics in the Food Sector. Proc. Eng. Sci. 2019, 1, 235–246. [Google Scholar] [CrossRef]
- Kuo, C.K.; Ma, P.X. Maintaining Dimensions and Mechanical Properties of Ionically Crosslinked Alginate Hydrogel Scaffolds In Vitro. J. Biomed. Mater. Res. 2008, 84A, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Güven, G.; Bocharova, V.; Halámek, J.; Tokarev, I.; Minko, S.; Melman, A.; Mandler, D.; Katz, E. Electrochemically Controlled Drug-Mimicking Protein Release from Iron-Alginate Thin-Films Associated with an Electrode. ACS Appl. Mater. Interfaces 2012, 4, 466–475. [Google Scholar] [CrossRef]
- Machida-Sano, I.; Ogawa, S.; Ueda, H.; Kimura, Y.; Satoh, N.; Namiki, H. Effects of Composition of Iron-Cross-Linked Alginate Hydrogels for Cultivation of Human Dermal Fibroblasts. Int. J. Biomater. 2012, 2012, 820513. [Google Scholar] [CrossRef]
- Haug, A.; Claeson, K.; Hansen, S.E.; Sömme, R.; Stenhagen, E.; Palmstierna, H. Fractionation of Alginic Acid. Acta Chem. Scand. 1959, 13, 601–603. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Ahmed, M.M.; Akhdhar, A.; Sulaiman, M.G.M.; Khan, Z.A. Recent Advances in Alginate-Based Adsorbents for Heavy Metal Retention from Water: A Review. Desalin. Water Treat. 2022, 272, 50–74. [Google Scholar] [CrossRef]
- Imeson, A.P. (Ed.) Thickening and Gelling Agents for Food; Springer: Boston, MA, USA, 1997; ISBN 978-1-4613-5921-0. [Google Scholar]
- Jiao, W.; Chen, W.; Mei, Y.; Yun, Y.; Wang, B.; Zhong, Q.; Chen, H.; Chen, W. Effects of Molecular Weight and Guluronic Acid/Mannuronic Acid Ratio on the Rheological Behavior and Stabilizing Property of Sodium Alginate. Molecules 2019, 24, 4374. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.K.; Katsaros, F.K.; Kouvelos, E.P.; Nolan, J.W.; Le Deit, H.; Kanellopoulos, N.K. Heavy Metal Sorption by Calcium Alginate Beads from Laminaria Digitata. J. Hazard. Mater. 2006, 137, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wan, Y.; Wang, W.; Li, W.; Zhu, J. Effect of Calcium Ions on the III Steps of Self-Assembly of SA Investigated with Atomic Force Microscopy. Int. J. Food Prop. 2018, 21, 1995–2006. [Google Scholar] [CrossRef]
- Tan, J.; Luo, Y.; Guo, Y.; Zhou, Y.; Liao, X.; Li, D.; Lai, X.; Liu, Y. Development of Alginate-Based Hydrogels: Crosslinking Strategies and Biomedical Applications. Int. J. Biol. Macromol. 2023, 239, 124275. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Rhee, S.K. Polysaccharides and Polyamides in the Food Industry: Properties, Production, and Patents; Wiley-VCH: Weinheim, Germany, 2005; ISBN 978-3-527-31345-7. [Google Scholar]
- Giz, A.S.; Berberoglu, M.; Bener, S.; Aydelik-Ayazoglu, S.; Bayraktar, H.; Alaca, B.E.; Catalgil-Giz, H. A Detailed Investigation of the Effect of Calcium Crosslinking and Glycerol Plasticizing on the Physical Properties of Alginate Films. Int. J. Biol. Macromol. 2020, 148, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Eslami, Z.; Elkoun, S.; Robert, M.; Adjallé, K. A Review of the Effect of Plasticizers on the Physical and Mechanical Properties of Alginate-Based Films. Molecules 2023, 28, 6637. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lu, K.; Tong, Q.; Liu, C. Barrier Properties and Microstructure of Pullulan–Alginate-Based Films. J. Food Process Eng. 2015, 38, 155–161. [Google Scholar] [CrossRef]
- Jost, V.; Kobsik, K.; Schmid, M.; Noller, K. Influence of Plasticiser on the Barrier, Mechanical and Grease Resistance Properties of Alginate Cast Films. Carbohydr. Polym. 2014, 110, 309–319. [Google Scholar] [CrossRef]
- Sharmin, N.; Sone, I.; Walsh, J.L.; Sivertsvik, M.; Fernández, E.N. Effect of Citric Acid and Plasma Activated Water on the Functional Properties of Sodium Alginate for Potential Food Packaging Applications. Food Packag. Shelf Life 2021, 29, 100733. [Google Scholar] [CrossRef]
- Song, Z.; Xiao, H.; Li, Y. Effects of Renewable Materials Coatings on Oil Resistant Properties of Paper. Nord. Pulp Pap. Res. J. 2015, 30, 344–349. [Google Scholar] [CrossRef]
- Odila Pereira, J.; Soares, J.; Costa, E.; Silva, S.; Gomes, A.; Pintado, M. Characterization of Edible Films Based on Alginate or Whey Protein Incorporated with Bifidobacterium Animalis Subsp. Lactis BB-12 and Prebiotics. Coatings 2019, 9, 493. [Google Scholar] [CrossRef]
- Liu, J.; Shang, S.; Jiang, Z.; Zhang, R.; Sui, S.; Zhu, P. Facile Fabrication of Chemically Modified Sodium Alginate Fibers with Enhanced Mechanical Performance. AATCC J. Res. 2022, 9, 35–42. [Google Scholar] [CrossRef]
- Siqueira, P.; Siqueira, É.; De Lima, A.E.; Siqueira, G.; Pinzón-Garcia, A.D.; Lopes, A.P.; Segura, M.E.C.; Isaac, A.; Pereira, F.V.; Botaro, V.R. Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials 2019, 9, 78. [Google Scholar] [CrossRef]
- Soares, J.D.P.; Dos Santos, J.E.; Chierice, G.O.; Cavalheiro, É.T.G. Thermal Behavior of Alginic Acid and Its Sodium Salt. Eclet. Quim. 2004, 29, 57–63. [Google Scholar] [CrossRef]
- Rao, K.M.; Mallikarjuna, B.; Krishna Rao, K.S.V.; Sudhakar, K.; Rao, K.C.; Subha, M.C.S. Synthesis and Characterization of pH Sensitive Poly (Hydroxy Ethyl Methacrylate-Co-Acrylamidoglycolic Acid) Based Hydrogels for Controlled Release Studies of 5-Fluorouracil. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 565–571. [Google Scholar] [CrossRef]
- Jost, V.; Reinelt, M. Effect of Ca2+ Induced Crosslinking on the Mechanical and Barrier Properties of Cast Alginate Films. J. Appl. Polym. Sci. 2018, 135, 45754. [Google Scholar] [CrossRef]
- Tordi, P.; Ridi, F.; Samorì, P.; Bonini, M. Cation-Alginate Complexes and Their Hydrogels: A Powerful Toolkit for the Development of Next-Generation Sustainable Functional Materials. Adv. Funct. Mater. 2024, 35, 2416390. [Google Scholar] [CrossRef]
- Yan, P.; Lan, W.; Xie, J. Modification on Sodium Alginate for Food Preservation: A Review. Trends Food Sci. Technol. 2024, 143, 104217. [Google Scholar] [CrossRef]
- Yang, J.; Fei, T.; Zhang, W.; Cong, X. Tannic Acid and Ca2+ Double-Crosslinked Alginate Films for Passion Fruit Preservation. Foods 2023, 12, 3936. [Google Scholar] [CrossRef]
- Zha, L.; Aachmann, F.L.; Sletta, H.; Arlov, Ø.; Zhou, Q. Cellulose Nanofibrils/Alginates Double-Network Composites: Effects of Interfibrillar Interaction and G/M Ratio of Alginates on Mechanical Performance. Biomacromolecules 2024, 25, 4797–4808. [Google Scholar] [CrossRef]
- Kiattijiranon, P.; Auras, R.A.; Sane, A. Enhanced Functional Properties for Packaging Applications Using Sodium Alginate/Starch Bilayer and Multilayer Films. ACS Appl. Polym. Mater. 2024, 6, 4642–4650. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Bugarčić, M.; Jovanović, A.; Petrović, J.; Mišić, M.; Sokić, M.; Milivojević, M. Decadal Trends in Biopolymer Production and Utilization: A Comprehensive Review. Met. Mater. Data 2024, 2, 81–98. [Google Scholar] [CrossRef]
- Tan, H.W.; Abdul Aziz, A.R.; Aroua, M.K. Glycerol Production and Its Applications as a Raw Material: A Review. Renew. Sustain. Energy Rev. 2013, 27, 118–127. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127. [Google Scholar] [CrossRef]
- Bagheri, F.; Radi, M.; Amiri, S. Drying Conditions Highly Influence the Characteristics of Glycerol-Plasticized Alginate Films. Food Hydrocoll. 2019, 90, 162–171. [Google Scholar] [CrossRef]
- Tong, Q.; Xiao, Q.; Lim, L. Effects of Glycerol, Sorbitol, Xylitol and Fructose Plasticisers on Mechanical and Moisture Barrier Properties of Pullulan–Alginate–Carboxymethylcellulose Blend Films. Int. J. Food Sci. Technol. 2013, 48, 870–878. [Google Scholar] [CrossRef]
- Benavides, S.; Villalobos-Carvajal, R.; Reyes, J.E. Physical, Mechanical and Antibacterial Properties of Alginate Film: Effect of the Crosslinking Degree and Oregano Essential Oil Concentration. J. Food Eng. 2012, 110, 232–239. [Google Scholar] [CrossRef]
- Titow, W.V. Plasticisers. In PVC Plastics; Springer: Dordrecht, The Netherlands, 1990; pp. 177–257. ISBN 978-1-85166-471-9. [Google Scholar]
- Marcilla, A.; Beltrán, M. Mechanisms of Plasticizers Action. In Handbook of Plasticizers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 119–134. ISBN 978-1-895198-97-3. [Google Scholar]
- Russo, R.; Abbate, M.; Malinconico, M.; Santagata, G. Effect of Polyglycerol and the Crosslinking on the Physical Properties of a Blend Alginate-Hydroxyethylcellulose. Carbohydr. Polym. 2010, 82, 1061–1067. [Google Scholar] [CrossRef]
- Gohil, R.M. Synergistic Blends of Natural Polymers, Pectin and Sodium Alginate. J. Appl. Polym. Sci. 2011, 120, 2324–2336. [Google Scholar] [CrossRef]
- Meng, X.; Tian, F.; Yang, J.; Li, F. Study on the Blending Solution Behavior and Membrane Properties of Sodium Alginate and Chitosan. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–5. [Google Scholar]
- Wibowo, A.H.; Fehragucci, H.; Purnawan, C. Effect of Plasticizer Addition on The Characteristics of Chitosan-Alginate Edible Film. ALCHEMY J. Pen. Kim. 2023, 19, 123. [Google Scholar] [CrossRef]
- Azucena Castro-Yobal, M.; Contreras-Oliva, A.; Saucedo-Rivalcoba, V.; Rivera-Armenta, J.L.; Hernández-Ramírez, G.; Salinas-Ruiz, J.; Herrera-Corredor, A. Evaluation of Physicochemical Properties of Film-Based Alginate for Food Packing Applications. e-Polymers 2021, 21, 82–95. [Google Scholar] [CrossRef]
- Pavlath, A.E.; Gossett, C.; Camirand, W.; Robertson, G.H. Ionomeric Films of Alginic Acid. J. Food Sci. 1999, 64, 61–63. [Google Scholar] [CrossRef]
- Straccia, M.C.; Romano, I.; Oliva, A.; Santagata, G.; Laurienzo, P. Crosslinker Effects on Functional Properties of Alginate/N-Succinylchitosan Based Hydrogels. Carbohydr. Polym. 2014, 108, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef]
- Draget, K.I.; Skjåk-Bræk, G.; Smidsrød, O. Alginate Based New Materials. Int. J. Biol. Macromol. 1997, 21, 47–55. [Google Scholar] [CrossRef]
- Esser, E.; Tessmar, J.K.V. Preparation of Well-defined Calcium Cross-linked Alginate Films for the Prevention of Surgical Adhesions. J. Biomed. Mater. Res. 2013, 101B, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.A.; Santos, W.D.O.D.; Malpass, G.R.P.; Okura, M.H.; Sanfelice, R.C.; Granato, A.C. Evaluation of the Physicochemical and Antibacterial Properties of Films Based on Biopolymers Incorporating Zingiber Officinale Extract. Res. Soc. Dev. 2020, 9, e618986199. [Google Scholar] [CrossRef]
- Wong, T.W.; Ashikin, W.H.N.S.; Law, C.L. Evaporation and Diffusion Transport Properties and Mechanical Properties of Alginate Dried Film. Dry. Technol. 2014, 32, 117–125. [Google Scholar] [CrossRef]
- Pamies, R.; Schmidt, R.R.; Martínez, M.D.C.L.; Torre, J.G.D.L. The Influence of Mono and Divalent Cations on Dilute and Non-Dilute Aqueous Solutions of Sodium Alginates. Carbohydr. Polym. 2010, 80, 248–253. [Google Scholar] [CrossRef]
- McHugh, D.J. (Ed.) Production and Utilization of Products from Commercial Seaweeds; FAO fisheries technical paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1987; ISBN 978-92-5-102612-0. [Google Scholar]
- Marcos, B.; Gou, P.; Arnau, J.; Comaposada, J. Influence of Processing Conditions on the Properties of Alginate Solutions and Wet Edible Calcium Alginate Coatings. LWT 2016, 74, 271–279. [Google Scholar] [CrossRef]
- Ureña, M.; Carullo, D.; Phùng, T.T.-T.; Fournier, P.; Farris, S.; Lagorce, A.; Karbowiak, T. Effect of Polymer Structure on the Functional Properties of Alginate for Film or Coating Applications. Food Hydrocoll. 2024, 149, 109557. [Google Scholar] [CrossRef]
- Bishnoi, S.; Trifol, J.; Moriana, R.; Mendes, A.C. Adjustable Polysaccharides-Proteins Films Made of Aqueous Wheat Proteins and Alginate Solutions. Food Chem. 2022, 391, 133196. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Dalla Rosa, M.; Siracusa, V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials 2019, 12, 2454. [Google Scholar] [CrossRef]
- Erben, M.; Pérez, A.A.; Osella, C.A.; Alvarez, V.A.; Santiago, L.G. Impact of Gum Arabic and Sodium Alginate and Their Interactions with Whey Protein Aggregates on Bio-Based Films Characteristics. Int. J. Biol. Macromol. 2019, 125, 999–1007. [Google Scholar] [CrossRef]
- El Miri, N.; Aziz, F.; Aboulkas, A.; El Bouchti, M.; Ben Youcef, H.; El Achaby, M. Effect of Plasticizers on Physicochemical Properties of Cellulose Nanocrystals Filled Alginate Bionanocomposite Films. Adv. Polym. Technol. 2018, 37, 3171–3185. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Alginate–Calcium Films: Water Vapor Permeability and Mechanical Properties as Affected by Plasticizer and Relative Humidity. LWT—Food Sci. Technol. 2008, 41, 359–366. [Google Scholar] [CrossRef]
- European Union/European Parliament and Council Regulation (EC). No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food; European Union/European Parliament and Council Regulation (EC): Brussels, Belgium, 2004. [Google Scholar]
- Zharkevich, V.; Melekhavets, N.; Savitskaya, T.; Hrynshpan, D. Enhancement of Barrier Properties Regarding Contaminants from Recycled Paperboard by Coating Packaging Materials with Starch and Sodium Alginate Blends. Sustain. Chem. Pharm. 2023, 32, 101001. [Google Scholar] [CrossRef]
- Mayrhofer, A.; Kopacic, S.; Bauer, W. Extensive Characterization of Alginate, Chitosan and Microfibrillated Cellulose Cast Films to Assess Their Suitability as Barrier Coating for Paper and Board. Polymers 2023, 15, 3336. [Google Scholar] [CrossRef]
- Fasulo, A.; Towie, C.; Mouchiroud, L.; Malik, H.; Foucher, D.; Sacripante, G. Enhancing the Properties of Sodium Alginate with a Glycerol–Silicate Plasticizer. Polysaccharides 2025, 6, 20. [Google Scholar] [CrossRef]
- Kang, H.W.; Sung, H.J.; Lee, T.-M.; Kim, D.-S.; Kim, C.-J. Liquid Transfer between Two Separating Plates for Micro-Gravure-Offset Printing. J. Micromech. Microeng. 2009, 19, 015025. [Google Scholar] [CrossRef]
- Wang, H.; Guo, T.; Li, H. Evaluation of Viscosity and Printing Quality of Chitosan-based Flexographic Inks: The Effect of Chitosan Molecular Weight. J. Appl. Polym. Sci. 2016, 133, 43997. [Google Scholar] [CrossRef]
- Sani, I.K.; Aminoleslami, L.; Mirtalebi, S.S.; Sani, M.A.; Mansouri, E.; Eghbaljoo, H.; Jalil, A.T.; Thanoon, R.D.; Khodaei, S.M.; Mohammadi, F.; et al. Cold Plasma Technology: Applications in Improving Edible Films and Food Packaging. Food Packag. Shelf Life 2023, 37, 101087. [Google Scholar] [CrossRef]
- Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties. Int. J. Polym. Sci. 2012, 2012, 562381. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Marasciulo, C.; Maggi, F.; Caprioli, G.; Mustafa, A.M.; Fini, P.; De Vietro, N.; Aresta, A.M.; Cosma, P. Realizing Eco-Friendly Water-Resistant Sodium-Alginate-Based Films Blended with a Polyphenolic Aqueous Extract from Grape Pomace Waste for Potential Food Packaging Applications. Int. J. Mol. Sci. 2023, 24, 11462. [Google Scholar] [CrossRef] [PubMed]
- Kannan, A.; Dheeptha, M.; Sistla, Y.S. Development of Pectin and Sodium Alginate Composite Films with Improved Barrier and Mechanical Properties for Food-Packaging Applications. Eng. Proc. 2023, 37, 80. [Google Scholar]
- Liu, Y.; Zhao, J.; Zhang, C.; Ji, H.; Zhu, P. The Flame Retardancy, Thermal Properties, and Degradation Mechanism of Zinc Alginate Films. J. Macromol. Sci. Part B 2014, 53, 1074–1089. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Yu, Y.; Chen, W.; Jiang, L.; Qin, J. Simple Fabrication of Inner Chitosan-coated Alginate Hollow Microfiber with Higher Stability. J. Biomed. Mater. Res. 2019, 107, 2527–2536. [Google Scholar] [CrossRef]
- Konwar, A.; Chowdhury, D. Property Relationship of Alginate and Alginate–Carbon Dot Nanocomposites with Bivalent and Trivalent Cross-Linker Ions. RSC Adv. 2015, 5, 62864–62870. [Google Scholar] [CrossRef]
- Krumova, M.; López, D.; Benavente, R.; Mijangos, C.; Pereña, J.M. Effect of Crosslinking on the Mechanical and Thermal Properties of Poly(Vinyl Alcohol). Polymer 2000, 41, 9265–9272. [Google Scholar] [CrossRef]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials 2001, 22, 763–768. [Google Scholar] [CrossRef]
- Soazo, M.; Báez, G.; Barboza, A.; Busti, P.A.; Rubiolo, A.; Verdini, R.; Delorenzi, N.J. Heat Treatment of Calcium Alginate Films Obtained by Ultrasonic Atomizing: Physicochemical Characterization. Food Hydrocoll. 2015, 51, 193–199. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, N.; Hou, J.; Yu, C.; Jin, Z.; Zeng, P.; Yang, L.; Fu, Y.; Shen, Y.; Guo, S. Effects of CaCl2, HCl, Acetic Acid or Citric Acid on Dynamic Mechanical Performances and Physicochemical Properties of Sodium Alginate Edible Films. Food Packag. Shelf Life 2022, 34, 100935. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Skrodzka, M.; Sicińska, H.; Michalak, I.; Detyna, J. Influence of Cross-Linking Conditions on Drying Kinetics of Alginate Hydrogel. Gels 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Khalaf, M.M.; Alghamdi, A.; Abou Taleb, M.F.; Zidan, N.S.; Abd El-Lateef, H.M. Formulation and Biological Evaluation of Sodium Alginate-Based Films Blended with Watercress Oil: A Promising Solution for Combating Foodborne Pathogens and Potential Food Packaging Applications. Food Chem. 2025, 473, 143089. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Pincheira, C.; Moeini, A.; Oliveira, P.; Abril, D.; Paredes-Padilla, Y.; Benavides-Valenzuela, S. Development of Alginate-Chitosan Bioactive Films Containing Essential Oils for Use in Food Packaging. Foods 2025, 14, 256. [Google Scholar] [CrossRef]
- Yoncheva, K.; Benbassat, N.; Zaharieva, M.M.; Dimitrova, L.; Kroumov, A.; Spassova, I.; Kovacheva, D.; Najdenski, H.M. Improvement of the Antimicrobial Activity of Oregano Oil by Encapsulation in Chitosan—Alginate Nanoparticles. Molecules 2021, 26, 7017. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef]
- Kowalonek, J.; Stachowiak, N.; Bolczak, K.; Richert, A. Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil. Polymers 2023, 15, 260. [Google Scholar] [CrossRef]
- Abdel Aziz, M.S.; Salama, H.E. Developing Multifunctional Edible Coatings Based on Alginate for Active Food Packaging. Int. J. Biol. Macromol. 2021, 190, 837–844. [Google Scholar] [CrossRef]
- Salama, H.; Abdel Aziz, M.; Saad, G.; Elsoholy, M. Optimization of the Water Vapor Permeability of Starch/Alginate Edible System Reinforced with Microcrystalline Cellulose for the Shelf-Life Extension of Green Capsicums. Egypt. J. Chem. 2021, 64, 4625–4633. [Google Scholar] [CrossRef]
- Salama, H.E.; Abdel Aziz, M.S. Optimized Alginate and Aloe Vera Gel Edible Coating Reinforced with nTiO2 for the Shelf-Life Extension of Tomatoes. Int. J. Biol. Macromol. 2020, 165, 2693–2701. [Google Scholar] [CrossRef]
- Abdel Aziz, M.S.; Salama, H.E.; Sabaa, M.W. Biobased Alginate/Castor Oil Edible Films for Active Food Packaging. LWT 2018, 96, 455–460. [Google Scholar] [CrossRef]
- Abdel Aziz, M.S.; Salama, H.E. Development of Alginate-Based Edible Coatings of Optimized UV-Barrier Properties by Response Surface Methodology for Food Packaging Applications. Int. J. Biol. Macromol. 2022, 212, 294–302. [Google Scholar] [CrossRef]
- Concha-Meyer, A.; Schöbitz, R.; Brito, C.; Fuentes, R. Lactic Acid Bacteria in an Alginate Film Inhibit Listeria monocytogenes Growth on Smoked Salmon. Food Control 2011, 22, 485–489. [Google Scholar] [CrossRef]
- Luan, Q.; Wang, Y.; Chen, Y.; Chen, H. Review on Improvement of Physicochemical Properties of Sodium Alginate-based Edible Films. J. Food Sci. 2025, 90, e70016. [Google Scholar] [CrossRef] [PubMed]
- Amaral, R.D.A.; Achaerandio, I.; Benedetti, B.C.; Pujolà, M. The Influence of Edible Coatings, Blanching and Ultrasound Treatments on Quality Attributes and Shelf-Life of Vacuum Packaged Potato Strips. LWT Food Sci. Technol. 2017, 85, 449–455. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Ferrari, C.C.; Sarantópoulos, C.I.G.L.; Hubinger, M.D. Fresh Cut ‘Tommy Atkins’ Mango Pre-Treated with Citric Acid and Coated with Cassava (Manihot Esculenta Crantz) Starch or Sodium Alginate. Innov. Food Sci. Emerg. Technol. 2011, 12, 381–387. [Google Scholar] [CrossRef]
- Jiang, T. Effect of Alginate Coating on Physicochemical and Sensory Qualities of Button Mushrooms (Agaricus Bisporus) under a High Oxygen Modified Atmosphere. Postharvest Biol. Technol. 2013, 76, 91–97. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S.; Marcotte, M. Shelf-life Extension of Peaches through Sodium Alginate and Methyl Cellulose Edible Coatings. Int. J. Food Sci. Technol. 2008, 43, 951–957. [Google Scholar] [CrossRef]
- Alharaty, G.; Ramaswamy, H.S. The Effect of Sodium Alginate-Calcium Chloride Coating on the Quality Parameters and Shelf Life of Strawberry Cut Fruits. J. Compos. Sci. 2020, 4, 123. [Google Scholar] [CrossRef]
- Raeisi, M.; Tabaraei, A.; Hashemi, M.; Behnampour, N. Effect of Sodium Alginate Coating Incorporated with Nisin, Cinnamomum zeylanicum, and Rosemary Essential Oils on Microbial Quality of Chicken Meat and Fate of Listeria monocytogenes during Refrigeration. Int. J. Food Microbiol. 2016, 238, 139–145. [Google Scholar] [CrossRef]
- Pavli, F.; Argyri, A.A.; Skandamis, P.; Nychas, G.-J.; Tassou, C.; Chorianopoulos, N. Antimicrobial Activity of Oregano Essential Oil Incorporated in Sodium Alginate Edible Films: Control of Listeria monocytogenes and Spoilage in Ham Slices Treated with High Pressure Processing. Materials 2019, 12, 3726. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Guerrero, A.; Monteschio, J.D.O.; Valero, M.V.; Carvalho, C.B.; De Abreu Filho, B.A.; Madrona, G.S.; Do Prado, I.N. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS ONE 2016, 11, e0160535. [Google Scholar] [CrossRef]
- Ruan, C.; Zhang, Y.; Sun, Y.; Gao, X.; Xiong, G.; Liang, J. Effect of Sodium Alginate and Carboxymethyl Cellulose Edible Coating with Epigallocatechin Gallate on Quality and Shelf Life of Fresh Pork. Int. J. Biol. Macromol. 2019, 141, 178–184. [Google Scholar] [CrossRef]
- DIN EN ISO 527-3:2019-02; Kunststoffe—Bestimmung Der Zugeigenschaften—Teil_3: Prüfbedingungen Für Folien Und Tafeln (ISO_527-3:2018). Deutsche Fassung EN_ISO_527-3:2018; DIN Media GmbH: Berlin, Germany, 2019. [CrossRef]

| Crosslinking Type | Effect on Tensile Strength | Effect on Elongation at Break | Reference |
|---|---|---|---|
| Ca2+-crosslinked | ↑ (40,209 MPa not crosslinked to 134,580 MPa) ↓ over 2% concentration | ↑ (3.64% not crosslinked to 5.55%) ↓ after 2 min crosslinking time | [29] |
| citric acid-crosslinked | ↓ from 22 MPa (control) to 9.3 MPa (1% CA) and to 7.5 MPa (2% Ca) | ↑ from 4% (control) to 15% (1% Ca) and to 23% (2% Ca) | [48] |
| Al3+-crosslinked | ↑ (40,209 MPa not crosslinked to 81,421 MPa) | ↓ (3.64% not crosslinked to 2.92%) | [29] |
| Plasticizer/Additives | Effect on WVP | Effect on OP | Effect on Contact Angle | Reference |
|---|---|---|---|---|
| Glycerol | ↑ from 4.65 × 10−10 g·m/(m2·day·Pa) at 0% glycerol to 4.94 × 10−10 g·m/(m2·day·Pa) at 10% glycerol (difference not reported as significant) | ↓ e.g., 50° at 5% Glycerol, 39° at 35% Glycerol | [44,95] | |
| Glycerol (40 wt% w/w dry alginate) | ↑ 410% (from ~0.35 to ~1.8 cm3(STP)·100 µm/(m2·d·bar)) | [47] | ||
| PEG | ↓ 14.69% (1.82 × 10−2 g·m/(m2·day·Pa) by Glycerol, compared to 1.56 × 10−2 g·m/(m2·day·Pa)) | [90] | ||
| Citric acid | ↓ up to 34% (from 7.97 × 104 g·m/(m2·day·Pa) to 5.24 × 104 g·m/(m2·day·Pa) with 1% Citric acid) | [45,48] | ||
| Starch | ↑ 73.03% (from 7.65 × 10−5 g·m/(m2·day·Pa) to 1.32 × 10−4 g·m/(m2·day·Pa)) | ↓ 45.65% (from 8.80 × 10−14 to 6.04 × 10−14 g·m/(m2·day·Pa)) | [60] | |
| Oleic acid | ↑ (from 4.5 × 102 g·m/(m2·day·Pa) without oleic acid to 6.00 × 102 g·m/(m2·day·Pa) with 10% oleic acid) | ↓ 40% (pure alginate 50°, with oleic acid 30°) | [75] | |
| Sorbitol (50 wt% w/w dry alginate) | ↑ ≈ 14% (from ~0.35 to ~0.40 cm3(STP)·100 µm/(m2·d·bar)) | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schenk, S.; Bucher, M.; Herrenbauer, M.; Schmid, D.; Schmid, M. Challenges of Alginate-Based Cast Films in Plastic-Free Food Packaging Applications: An Overview. Polymers 2025, 17, 3061. https://doi.org/10.3390/polym17223061
Schenk S, Bucher M, Herrenbauer M, Schmid D, Schmid M. Challenges of Alginate-Based Cast Films in Plastic-Free Food Packaging Applications: An Overview. Polymers. 2025; 17(22):3061. https://doi.org/10.3390/polym17223061
Chicago/Turabian StyleSchenk, Sophie, Matthias Bucher, Michael Herrenbauer, Daniela Schmid, and Markus Schmid. 2025. "Challenges of Alginate-Based Cast Films in Plastic-Free Food Packaging Applications: An Overview" Polymers 17, no. 22: 3061. https://doi.org/10.3390/polym17223061
APA StyleSchenk, S., Bucher, M., Herrenbauer, M., Schmid, D., & Schmid, M. (2025). Challenges of Alginate-Based Cast Films in Plastic-Free Food Packaging Applications: An Overview. Polymers, 17(22), 3061. https://doi.org/10.3390/polym17223061

