Effect of the Addition of Acetylated Polysaccharides on the Properties of an Active Packaging Based on Polysuccinimide and Oregano Essential Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acetylation of Polysaccharides
2.3. Preparation of the Films
2.4. Molecular Properties
2.5. Color
2.6. Scanning Electron Microscopy
2.7. Moisture Content, Water Solubility, and Contact Angle
2.8. Thickness and Water Vapor Permeability (WVP)
2.9. Mechanical Properties
2.10. Thermal Properties
2.11. Antioxidant Activity
2.12. Antibacterial Activity
2.13. Experimental Design
3. Results and Discussion
3.1. Percentage of Acetylation and Degree of Substitution
3.2. Molecular Properties
3.3. Moisture, Solubility, and Contact Angle
3.4. Color Properties
3.5. Thickness and Water Vapor Permeability (WVP)
3.6. Mechanical Properties
3.7. Morphological Properties
3.8. Thermal Properties
3.9. Antioxidant Activity
3.10. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardila-Diaz, L.D.; Oliveira, T.V.d.; Soares, N.d.F.F. Development and evaluation of the chromatic behavior of an intelligent packaging material based on cellulose acetate incorporated with polydiacetylene for an efficient packaging. Biosensors 2020, 10, 59. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential oils and their application on active packaging systems: A review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Jiménez-Regalado, E.J.; Caicedo, C.; Fonseca-García, A.; Rivera-Vallejo, C.C.; Aguirre-Loredo, R.Y. Preparation and physicochemical properties of modified corn starch–chitosan biodegradable films. Polymers 2021, 13, 4431. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Teixeira-Costa, B.E.; Andrade, C.T. Natural polymers used in edible food packaging—History, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharydes 2022, 3, 32–58. [Google Scholar] [CrossRef]
- Domene-López, D.; García-Quesada, J.C.; Martin-Gullon, I.; Montalbán, M.G. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers 2019, 11, 1084. [Google Scholar] [CrossRef]
- Verma, M.K.; Shakya, S.; Kumar, P.; Madhavi, J.; Murugaiyan, J.; Rao, M.V.R. Trends in packaging material for food products: Historical background, current scenario, and future prospects. J. Food Sci. Technol. 2021, 58, 4069–4082. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.S.; Ludueña, L.N.; Flores, S.K. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. Carbohydr. Polym. Technol. Appl. 2023, 5, 100307. [Google Scholar] [CrossRef]
- dos Santos Caetano, K.; Almeida Lopes, N.; Haas Costa, T.M.; Brandelli, A.; Rodrigues, E.; Hickmann Flôres, S.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life. 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Bennett, G.D. A green polymerization of aspartic acid for the undergraduate organic laboratory. J. Chem. Educ. 2005, 82, 1380. [Google Scholar] [CrossRef]
- Trinh, L.T.; Lim, S.; Lee, H.J.; Kim, I.T. Development of efficient sodium alginate/polysuccinimide-based hydrogels as biodegradable acetaminophen delivery systems. Gels 2023, 9, 980. [Google Scholar] [CrossRef]
- Velazco-De-La-Garza, J.; Avérous, L.; de Jesús Sosa-Santillán, G.; Pollet, E.; Zugasti-Cruz, A.; Sierra-Rivera, C.A.; Pérez-Aguilar, N.V.; Oyervides-Muñoz, E. Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. Eur. Polym. J. 2020, 131, 109705. [Google Scholar] [CrossRef]
- Saabome, S.M.; Abdul-Malik, S.U.; Adu-Poku, B.; Soongseok, Y. A review on plasticizers and eco-friendly bioplasticizers: Biomass sources and market. IJERT 2020, 9, 1138–1144. [Google Scholar] [CrossRef]
- Nie, K.; Song, Y.; Liu, S.; Han, G.; Ben, H.; Ragauskas, A.J.; Jiang, W. Preparation and characterization of microcellulose and nanocellulose fibers from artemisia vulgaris bast. Polymers 2019, 11, 907. [Google Scholar] [CrossRef] [PubMed]
- Solis Salas, L.M. Evaluación del Atrapamiento y la Liberación del Aceite Esencial de Orégano (Lippia Berlandieri Schauer) en Polisuccinimida. Bachelor’s Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 2013. [Google Scholar]
- Ashori, A.; Babaee, M.; Jonoobi, M.; Hamzeh, Y. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr. Polym. 2014, 102, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, D.; Gu, Z.; Li, Z.; Hong, Y.; Li, C. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films. Int. J. Biol. Macromol. 2018, 111, 959–966. [Google Scholar] [CrossRef]
- Kumar Malik, M.; Kumar, T.; Kumar, V.; Singh, J.; Kumar Singh, R.; Saini, K. Sustainable, highly foldable, eco-friendly films from Mandua starch derivative. Sustain. Energy Technol. Assess. 2022, 53, 102398. [Google Scholar] [CrossRef]
- Fitch-Vargas, P.R.; Camacho-Hernández, I.L.; Martínez-Bustos, F.; Islas-Rubio, A.R.; Carrillo-Cañedo, K.I.; Calderón-Castro, A.; Jacobo-Valenzuela, N.; Carrillo-López, A.; Delgado-Nieblas, C.I.; Aguilar-Palazuelos, E. Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydr. Polym. 2019, 219, 378–386. [Google Scholar] [CrossRef]
- Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int. J. Food. Microbiol. 2019, 292, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Pichardo, S.; Jos, A.; Moyano, R.; Cameán, A.M. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem. Toxicol. 2017, 101, 36–47. [Google Scholar] [CrossRef]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Hashemi, M.; Hashemi, M.; Daneshamooz, S.; Raeisi, M.; Jannat, B.; Taheri, S.; Noori, S.M.A. An overview on antioxidants activity of polysaccharide edible films and coatings contains essential oils and herb extracts in meat and meat products. Adv. Anim. Vet. Sci 2020, 8, 198–207. [Google Scholar] [CrossRef]
- De Farias, P.M.; De Sousa, R.V.; Maniglia, B.C.; Pascall, M.; Matthes, J.; Sadzik, A.; Schmid, M.; Fai, A.E.C. Biobased food packaging systems functionalized with essential oil via pickering emulsion: Advantages, challenges, and current applications. ACS Omega 2025, 10, 4173–4186. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Centeno, F.; Hernández-González, M.; Tirado-Gallegos, J.M.; Rodríguez-González, C.A.; Rios-Velasco, C.; Rodríguez-Hernández, A.M.; la Peña, H.Y.L.-D.; Zamudio-Flores, P.B. Biobased films from unconventionally sourced starch (Cucurbita foetidissima Kunth) and oregano essential oil (Lippia berlandieri Schauer): A look at their physicochemical properties. MRS Adv. 2024, 9, 523–530. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Tsagkalias, I.; Vouvoudi, E.C.; Achilias, D.S. Development of bio-composites with enhanced antioxidant activity based on poly(lactic acid) with thymol, carvacrol, limonene, or cinnamaldehyde for active food packaging. Polymers 2021, 13, 3652. [Google Scholar] [CrossRef]
- Anis, A.; Pal, K.; Al-Zahrani, S.M. Essential oil-containing polysaccharide-based edible films and coatings for food security applications. Polymers 2021, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Hernández-González, M.; Pérez Berumen, C.M.; Sánchez Ruíz, H.; Ruíz Salazar, C.V.; Hernández Paz, J.F.; Olivas-Armendáriz, I.; Martel-Estrada, S.A.; Rodríguez González, C.A. Polysuccinimide functionalized with oregano’s essential oil extracts, an antimicrobial extended release bio-material. Mater. Lett. 2017, 191, 73–76. [Google Scholar] [CrossRef]
- Muhamad, M.; Hornsby, P.; Carmichael, E.; Zakaria, M.; Seok, Y.B.; Mohamed, S.; Sharma, S. Characterisation of cellulose nanofibres derived from chemical and mechanical treatments. MATEC Web Conf. 2019, 253, 1002. [Google Scholar] [CrossRef]
- Ávila Ramírez, J.A.; Gómez Hoyos, C.; Arroyo, S.; Cerrutti, P.; Foresti, M.L. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent. Carbohydr. Polym. 2016, 153, 686–695. [Google Scholar] [CrossRef]
- Dewi, A.M.P.; Pranoto, Y.; Edowai, D.N.; Tethool, E.F. Effect of acetylation method on characterization of cellulose acetate based sago “hampas”. Int. J. Adv. Biotechnol. Res. 2019, 10, 785–791. [Google Scholar]
- Xu, Y.; Miladinov, V.; Hanna, M.A. Synthesis and characterization of starch acetates with high substitution. Cereal Chem. 2004, 81, 735–740. [Google Scholar] [CrossRef]
- Hernández-Pérez, I.A. Obtención y Caracterización de Nanocelulosa a Partir de Fibras de Lechuguilla Como Refuerzo de un Biocomposito. Bachelor’s Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 2021. [Google Scholar]
- Tirado-Gallegos, J.M.; Zamudio-Flores, P.B.; Ornelas-Paz, J.d.J.; Rios-Velasco, C.; Olivas Orozco, G.I.; Espino-Díaz, M.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J.; Aguilar-González, M.A.; Lardizábal-Gutiérrez, D. Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings 2018, 8, 384. [Google Scholar] [CrossRef]
- da Silva Filipini, G.; Romani, V.P.; Guimarães Martins, V. Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocoll. 2020, 109, 106139. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Jiang, Q.; Yu, D.; Xu, Y.; Wang, B.; Xia, W. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr. Polym. 2021, 260, 117778. [Google Scholar] [CrossRef] [PubMed]
- ASTM-E-96-80; Standard Methods of Test for Water Vapor Transmission of Materials in Sheet Form. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-882-95a; Standard Test Method for Water Vapor Transmission Rate Through Plastic Filmand Sheeting Using a Modulated Infrared Sensor. ASTM International: West Conshohocken, PA, USA, 1995.
- Martucci, J.F.; Gende, L.B.; Neira, L.M.; Ruseckaite, R.A. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind. Crop. Prod. 2015, 71, 205–213. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Pandey, V.K.; Upadhyay, S.N.; Niranjan, K.; Mishra, P.K. Antimicrobial biodegradable chitosan-based composite Nano-layers for food packaging. Int. J. Biol. Macromol. 2020, 157, 212–219. [Google Scholar] [CrossRef]
- Dong, F.; Yan, M.; Jin, C.; Li, S. Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA FILMS. Polymers 2017, 9, 346. [Google Scholar] [CrossRef]
- Assis, R.Q.; Pagno, C.H.; Stoll, L.; Rios, P.D.A.; Rios, A.d.O.; Olivera, F.C. Active food packaging of cellulose acetate: Storage stability, protective effect on oxidation of riboflavin and release in food simulants. Food. Chem. 2021, 349, 129140. [Google Scholar] [CrossRef]
- Jiang, Z.; Ngai, T. Recent Advances in chemically modified cellulose and its derivatives for food packaging applications: A review. Polymers 2022, 14, 1533. [Google Scholar] [CrossRef]
- Imre, B.; Vilaplana, F. Organocatalytic esterification of corn starches towards enhanced thermal stability and moisture resistance. Green Chem. 2020, 22, 5017–5031. [Google Scholar] [CrossRef]
- Plati, F.; Papi, R.; Paraskevopoulou, A. Characterization of oregano essential oiL (Origanum vulgare L. subsp. hirtum) particles produced by the novel nano spray drying technique. Foods 2021, 10, 2923. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Wiens, R.A.; Gough, K.M.; Aluko, R.E. Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocoll. 2020, 100, 105424. [Google Scholar] [CrossRef]
- El Halal, S.L.; Colussi, R.; Biduski, B.; Evangelho, J.A.; Bruni, G.P.; Antunes, M.D.; Dias, A.R.; Zavareze, E.D. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley. J. Sci. Food Agric. 2017, 97, 411–419. [Google Scholar] [CrossRef]
- Colussi, R.; Pinto, V.Z.; El Halal, S.L.M.; Biduski, B.; Prietto, L.; Castilhos, D.D.; Zavareze, E.d.R.; Dias, A.R.G. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties. Food. Chem. 2017, 221, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, S.; Ali, T.M.; Sheikh, M.; Hasnain, A. Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int. J. Biol. Macromol. 2020, 155, 786–794. [Google Scholar] [CrossRef]
- Schmidt, V.C.R.; Blanco-Pascual, N.; Tribuzi, G.; Laurindo, J.B. Effect of the degree of acetylation, plasticizer concentration and relative humidity on cassava starch films properties. Food Sci. Technol. Camp. 2019, 39, 491–499. [Google Scholar] [CrossRef]
- Noivoil, N.; Yoksan, R. Compatibility improvement of poly (lactic acid)/thermoplastic starch blown films using acetylated starch. J. Appl. Polym. Sci. 2021, 138, 49675. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Molina, G.; Pelissari, F.M. Biodegradable trays based on cassava starch blended with agroindustrial residues. Compos. B Eng. 2020, 183, 107682. [Google Scholar] [CrossRef]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Abdelkarim, E.A.; Al-Tohamy, R.; Kornaros, M.; Ruiz, H.A.; Zhao, T.; Li, F.; Sun, J. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresour. Technol. 2022, 363, 127869. [Google Scholar] [CrossRef]
- Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int. J. Biol. Macromol. 2018, 107, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- de Farias, J.G.G.; Cavalcante, R.C.; Canabarro, B.R.; Viana, H.M.; Scholz, S.; Simão, R.A. Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydr. Polym. 2017, 165, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xia, R.; Zheng, L.; Yuan, T.; Sun, R. Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydr. Polym. 2019, 224, 115164. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Saleh, M.A.; Al Haron, M.H.; Farag, M. Insights into the effect of moisture absorption and fiber content on the mechanical behavior of starch–date-palm fiber composites. Starch-Stärke 2017, 69, 1600254. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and antioxidant performance of various essential oils and natural extracts and their incorporation into biowaste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate) layers made from electrospun ultrathin fibers. Nanomaterials 2019, 9, 144. [Google Scholar] [CrossRef]
- Chen, C.; He, L.; Tian, Y.; Xie, J. Improving the preparation process to enhance the retention of cinnamon essential oil in thermoplastic starch/PBAT active film and its antimicrobial activity. Ind. Crop. Prod. 2025, 230, 120990. [Google Scholar] [CrossRef]
- Laorenza, Y.; Harnkarnsujarit, N. Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp. Food. Chem. 2021, 363, 130252. [Google Scholar] [CrossRef]
- Kale, R.D.; Gorade, V.G.; Madye, N.; Chaudhary, B.; Bangde, P.S.; Dandekar, P.P. Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int. J. Biol. Macromol. 2018, 118, 1090–1102. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Wang, C.; Yan, S.; Lu, P.; Wang, S. Developed chitosan/oregano essential oil biocomposite packaging film enhanced by cellulose nanofibril. Polymers 2020, 12, 1780. [Google Scholar] [CrossRef]
- Souza Da Rosa, T.; Trianoski, R.; Michaud, F.; Belloncle, C.; Iwakiri, S. Efficiency of different acetylation methods applied to cellulose fibers waste from pulp and paper mill sludge. J. Nat. Fibers. 2022, 19, 185–198. [Google Scholar] [CrossRef]
- Shen, Z.; Kamdem, D.P. Development and characterization of biodegradable chitosan films containing two essential oils. Int. J. Biol. Macromol. 2015, 74, 289–296. [Google Scholar] [CrossRef]
- Cuenca, P.; Ferrero, S.; Albani, O. Preparation and characterization of cassava starch acetate with high substitution degree. Food Hydrocoll. 2020, 100, 105430. [Google Scholar] [CrossRef]
- Sondari, D. Modification of sago starch for edible coating. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012013. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P. TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polym. Test. 2011, 30, 397–407. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, H.; Bao, C. Stimuli-responsive poly(aspartamide) derivatives and their applications as drug carriers. Int. J. Mol. Sci. 2021, 22, 8817. [Google Scholar] [CrossRef]
- Teodoro, A.P.; Mali, S.; Romero, N.; de Carvalho, G.M. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization. Carbohydr. Polym. 2015, 126, 9–16. [Google Scholar] [CrossRef]
- Bahmid, N.A.; Syamsu, K.; Maddu, A. Production of cellulose acetate from oil palm empty fruit bunches cellulose. Chem. Process Eng. Res. 2013, 17, 12–20. [Google Scholar]
- Freitas, R.R.M.d.; Carmo, K.P.d.; Pádua, F.A.d.; Botaro, V.R.J.M.R. Kinetics, thermodynamics and structure: An analysis of corn starch acetylation. Mat. Res. 2025, 28, e20240333. [Google Scholar] [CrossRef]
- Sukmawan, R.; Kusmono; Wildan, M.W. Optimizing acetic anhydride amount for improved properties of acetylated cellulose nanofibers from sisal fibers using a high-speed blender. ACS Omega 2023, 8, 27117–27126. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cruz, C.A.; Caicedo, C.; Jiménez-Regalado, E.J.; Díaz de León, R.; López-González, R.; Aguirre-Loredo, R.Y. Evaluation of the antimicrobial, thermal, mechanical, and barrier properties of corn starch–chitosan biodegradable films reinforced with cellulose nanocrystals. Polymers 2022, 14, 2166. [Google Scholar] [CrossRef]
- Han, F.; Gao, C.; Liu, M.; Huang, F.; Zhang, B. Synthesis, optimization and characterization of acetylated corn starch with the high degree of substitution. Int. J. Biol. Macromol. 2013, 59, 372–376. [Google Scholar] [CrossRef]
- Bodea, I.M.; Cătunescu, G.M.; Pop, C.R.; Fiț, N.I.; David, A.P.; Dudescu, M.C.; Stănilă, A.; Rotar, A.M.; Beteg, F.I. Antimicrobial properties of bacterial cellulose films enriched with bioactive herbal extracts obtained by microwave-assisted extraction. Polymers 2022, 14, 1435. [Google Scholar] [CrossRef]
- Salem, A.; Jridi, M.; Abdelhedi, O.; Fakhfakh, N.; Nasri, M.; Debeaufort, F.; Zouari, N. Development and characterization of fish gelatin-based biodegradable film enriched with Lepidium sativum extract as active packaging for cheese preservation. Heliyon 2021, 7, e08099. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bermudez, J.M.; Baños, A.; Ariza, J.J.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products. Food Addit. Contam. Part A 2018, 35, 783–792. [Google Scholar] [CrossRef] [PubMed]





| Film Code | Component (%, w/w) | ||||
|---|---|---|---|---|---|
| PSI | MCC (Acetylation Time) | Starch (Acetylation Time) | Glycerol | OEO | |
| T1 (control) | 22 | 22 (0 h) | 22 (0 h) | 30.5 | 3.5 |
| T2 | 22 | 22 (1 h) | 22 (1 h) | 30.5 | 3.5 |
| T3 | 22 | 22 (3 h) | 22 (2 h) | 30.5 | 3.5 |
| T4 | 22 | 22 (5 h) | 22 (3 h) | 30.5 | 3.5 |
| Film | Moisture (%) | Solubility (%) | L* | a* | b* | ΔE* |
|---|---|---|---|---|---|---|
| T1 | 13.17 ± 0.08 a | 45.64 ± 0.15 a | 60.70 ± 0.06 a | 9.21 ± 0.21 c | 4.34 ± 0.03 d | - |
| T2 | 13.50 ± 0.08 a | 44.52 ± 0.07 a | 60.24 ± 0.28 a | 9.88 ± 0.60 c | 6.83 ± 0.07 c | 10.31 ± 0.01 a |
| T3 | 11.44 ± 0.15 b | 41.56 ± 0.08 b | 57.56 ± 0.05 b | 11.65 ± 0.03 b | 8.43 ± 0.01 b | 9.56 ± 0.01 b |
| T4 | 9.81 ± 0.14 c | 38.75 ± 0.50 c | 56.14 ± 0.27 c | 17.17 ± 0.32 a | 13.24 ± 0.12 a | 4.49 ± 0.09 c |
| Film | Thickness (mm) | WVP × 10−10 (g·m−1·s−1·Pa−1) | TS (MPa) | %E | EM (MPa) |
|---|---|---|---|---|---|
| Film T1 | 1.08 ± 0.02 a | 10.64 ± 0.14 a | 0.86 ± 0.03 c | 14.16 ± 0.17 c | 0.96 ± 0.03 c |
| Film T2 | 1.05 ± 0.02 a | 11.06 ± 0.63 a | 0.84 ± 0.02 c | 15.13 ± 0.17 c | 1.36 ± 0.05 b |
| Film T3 | 1.06 ± 0.02 a | 7.63 ± 0.19 b | 1.09 ± 0.01 b | 18.35 ± 0.18 b | 1.61 ± 0.02 a |
| Film T4 | 1.07 ± 0.02 a | 4.63 ± 0.08 c | 1.34 ± 0.01 a | 21.66 ± 0.71 a | 1.65 ± 0.04 a |
| Film | TGA | DSC | ||||
|---|---|---|---|---|---|---|
| MC100 (%) | T90 (°C) | Tonset (°C) | RM700 (%) | Tm (°C) | HΔm (J/g) | |
| T1 | 1.95 ± 0.01 a | 188.40 ± 1.77 b | 142.13 ± 0.03 b | 21.09 ± 0.40 b | 213.22 ± 0.06 b | 150.89 ± 0.06 a |
| T2 | 1.87 ± 0.26 a | 189.90 ± 2.81 b | 143.10 ± 0.57 b | 21.93 ± 1.17 a | 216.55 ± 0.43 a | 137.45 ± 0.06 b |
| T3 | 1.52 ± 0.02 b | 191.48 ± 0.84 b | 147.58 ± 0.51 a | 21.38 ± 0.57 a | 218.17 ± 0.49 a | 99.83 ± 0.06 c |
| T4 | 1.51 ± 0.51 b | 198.22 ± 1.07 a | 148.60 ± 0.40 a | 19.91 ± 2.17 a | 216.93 ± 0.93 a | 97.83 ± 0.86 c |
| Film | Antioxidant Activity | Antibacterial Activity | ||
|---|---|---|---|---|
| DPPH (mg TE/100 g) | ABTS (mg TE/100 g) | S. aureus (mm) | E. coli (mm) | |
| T0 | ------ | ------ | 2.10 ± 0.15 a | 2.40 ± 0.32 a |
| T1 | 14.00 ± 0.44 a | 46.65 ± 0.10 a | 1.60 ± 0.08 b | 1.70 ± 0.03 b |
| T2 | 14.38 ± 0.58 a | 46.52 ± 0.29 a | 1.50 ± 0.12 b | 1.60 ± 0.03 b |
| T3 | 13.74 ± 0.06 a | 46.96 ± 0.09 a | 1.70 ± 0.12 ab | 1.60 ± 0.18 b |
| T4 | 14.31 ± 0.42 a | 46.81 ± 0.12 a | 1.50 ± 0.05 b | 1.40 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Pérez, I.A.; Hernández-González, M.; Vega-Rios, A.; Chávez-Martínez, A.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Rodríguez-Hernández, A.M.; Morales-Ovando, M.A.; Tirado-Gallegos, J.M. Effect of the Addition of Acetylated Polysaccharides on the Properties of an Active Packaging Based on Polysuccinimide and Oregano Essential Oil. Polymers 2025, 17, 2903. https://doi.org/10.3390/polym17212903
Hernández-Pérez IA, Hernández-González M, Vega-Rios A, Chávez-Martínez A, Rentería-Monterrubio AL, Sánchez-Vega R, Rodríguez-Hernández AM, Morales-Ovando MA, Tirado-Gallegos JM. Effect of the Addition of Acetylated Polysaccharides on the Properties of an Active Packaging Based on Polysuccinimide and Oregano Essential Oil. Polymers. 2025; 17(21):2903. https://doi.org/10.3390/polym17212903
Chicago/Turabian StyleHernández-Pérez, Ignacio Antonio, María Hernández-González, Alejandro Vega-Rios, América Chávez-Martínez, Ana Luisa Rentería-Monterrubio, Rogelio Sánchez-Vega, Ana Margarita Rodríguez-Hernández, Mario Alberto Morales-Ovando, and Juan Manuel Tirado-Gallegos. 2025. "Effect of the Addition of Acetylated Polysaccharides on the Properties of an Active Packaging Based on Polysuccinimide and Oregano Essential Oil" Polymers 17, no. 21: 2903. https://doi.org/10.3390/polym17212903
APA StyleHernández-Pérez, I. A., Hernández-González, M., Vega-Rios, A., Chávez-Martínez, A., Rentería-Monterrubio, A. L., Sánchez-Vega, R., Rodríguez-Hernández, A. M., Morales-Ovando, M. A., & Tirado-Gallegos, J. M. (2025). Effect of the Addition of Acetylated Polysaccharides on the Properties of an Active Packaging Based on Polysuccinimide and Oregano Essential Oil. Polymers, 17(21), 2903. https://doi.org/10.3390/polym17212903

