Post-Process Cytotoxicity of Resins in Clear Aligner Fabrication
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Clear Aligner Samples
2.2. Preparation of the Extracts
2.3. XTT Cell Viability Assay
2.4. xCELLigence Real Time Cell Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The XTT assay results demonstrated that the cell viability of all study groups remained above the 70% cytotoxicity threshold defined by ISO 10993-5 across all dilution rates and time points. However, a slight decrease in cell viability was observed at 24 h in the undiluted extract group.
- The xCELLigence RTCA analysis similarly revealed a temporary reduction in cell viability within the first 24 h, which was subsequently followed by continuous cell proliferation over time.
- These findings indicate that the tested resins and post-curing protocols exhibited no cytotoxic effects on human gingival fibroblasts, supporting their suitability for continued development in dental and biomedical applications.
- The evaluation of resins used in 3D clear aligner production with both assays resulted in consistent findings that provide preliminary evidence for the biological safety of these materials and suggest their potential suitability for clinical use.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Weir, T. Clear aligners in orthodontic treatment. Aust. Dent. J. 2017, 62, 58–62. [Google Scholar] [CrossRef]
- Kuo, E.; Miller, R.J. Automated custom-manufacturing technology in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 578–581. [Google Scholar] [CrossRef]
- Can, E.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Zinelis, S.; Eliades, G.; Eliades, T. In-house 3D-printed aligners: Effect of in vivo ageing on mechanical properties. Eur. J. Orthod. 2022, 44, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Pratsinis, H.; Papageorgiou, S.N.; Panayi, N.; Iliadi, A.; Eliades, T.; Kletsas, D. Cytotoxicity and estrogenicity of a novel 3-dimensional printed orthodontic aligner. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 116–122. [Google Scholar] [CrossRef]
- Shah, M.J.; Kubavat, A.K.; Patel, K.V.; Prajapati, N.H. Fabrication of in-house aligner—A review. J. Contemp. Orthod. 2022, 6, 120–124. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Alwafi, A.; Liu, X.; Andrews, J.; Ludwig, B.; Bichu, A.Y.; Zou, B. Advances in orthodontic clear aligner materials. Bioact. Mater. 2022, 22, 384–403. [Google Scholar] [CrossRef]
- Alessandra, C.; Anastasia, A.; Giovanni, B.; Francesca, P.; Marco, M.; Sara, D.; Eleonora, L.M.; Giorgio, M. Comparison of the cytotoxicity of 3D-printed aligners using different post-curing procedures: An in vitro study. Australas. Orthod. J. 2023, 39, 49–56. [Google Scholar] [CrossRef]
- Koenig, N.; Choi, J.-Y.; McCray, J.; Hayes, A.; Schneider, P.; Kim, K.B. Comparison of dimensional accuracy between direct-printed and thermoformed aligners. Korean J. Orthod. 2022, 52, 249–257. [Google Scholar] [CrossRef]
- Edelmann, A.; English, J.D.; Chen, S.J.; Kasper, F.K. Analysis of the thickness of 3-dimensional-printed orthodontic aligners. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 91–98. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef]
- Wulff, J.; Schweikl, H.; Rosentritt, M. Cytotoxicity of printed resin-based splint materials. J. Dent. 2022, 120, 104097. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-H.; Lee, S.-Y.; Gu, H.; Jin, G.; Kim, J.-E. Evaluating oxygen shielding effect using glycerin or vacuum with varying temperature on 3D printed photopolymer in post-polymerization. J. Mech. Behav. Biomed. Mater. 2022, 130, 105170. [Google Scholar] [CrossRef]
- Schupp, W.; Haubrich, J.; Klingberg, M.; Boisserée, W.; Sim, U.S.; Kim, H. Shape memory aligners: A new dimension in aligner orthodontics. J. Aligner Orthod. 2023, 7, 113–127. [Google Scholar]
- Kim, J.-E.; Mangal, U.; Yu, J.-H.; Kim, G.-T.; Kim, H.; Seo, J.-Y.; Cha, J.-Y.; Lee, K.-J.; Kwon, J.-S.; Choi, S.-H. Evaluation of the effects of temperature and centrifugation time on elimination of uncured resin from 3D-printed dental aligners. Sci. Rep. 2024, 14, 15206. [Google Scholar] [CrossRef] [PubMed]
- Iodice, G.; Ludwig, B.; Polishchuk, E.; Petruzzelli, R.; Di Cunto, R.; Husam, S.; Farella, M. Effect of post-printing curing time on cytotoxicity of direct printed aligners: A pilot study. Orthod. Craniofacial Res. 2024, 27, 141–146. [Google Scholar] [CrossRef]
- ISO 10993-12; Biological Evaluation of Medical Devices, Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 10993-5; Biological Evaluation of Medical Devices, Part 5: Tests for İn Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2021.
- Folwaczny, M.; Ahantab, R.; Kessler, A.; Ern, C.; Frasheri, I. Cytotoxicity of 3D printed resin materials for temporary restorations on human periodontal ligament (PDL-hTERT) cells. Dent. Mater. 2023, 39, 529–537. [Google Scholar] [CrossRef]
- Frasheri, I.; Aumer, K.; Keßler, A.; Miosge, N.; Folwaczny, M. Effects of resin materials dedicated for additive manufacturing of temporary dental restorations on human gingival keratinocytes. J. Esthet. Restor. Dent. 2022, 34, 1105–1112. [Google Scholar] [CrossRef]
- Puškar, T.; Trifković, B.; Đurović-Koprivica, D.; Milić, S.M.; Vuković, Z.; Blagojević, V. In vitro cytotoxicity assessment of 3D printed polymer based epoxy resin intended for use in dentistry. Vojnosanit. Pregl. 2019, 76, 502–509. [Google Scholar] [CrossRef]
- Arossi, G.A.; Abdou, N.A.; Hung, B.; Garcia, I.M.; Zimmer, R.; Melo, M.A. Safety of 3D-Printed Acrylic Resins for Prosthodontic Appliances: A Comprehensive Cytotoxicity Review. Appl. Sci. 2024, 14, 8322. [Google Scholar] [CrossRef]
- Willi, A.; Patcas, R.; Zervou, S.-K.; Panayi, N.; Schätzle, M.; Eliades, G.; Hiskia, A.; Eliades, T. Leaching from a 3D-printed aligner resin. Eur. J. Orthod. 2023, 45, 244–249. [Google Scholar] [CrossRef]
- Azhagudurai, N.; Rajendran, R.; Aishwarya, K.; Rajendrababu, S.; Kumar, S.; Reddy, M. Detecting Bisphenol A Leaching from Four Different Commercially Available Clear Aligner Sheets: An Ex Vivo Study. J. Contemp. Dent. Pract. 2024, 25, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.M. A Guide through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Materials 2019, 12, 4057. [Google Scholar] [CrossRef]
- Pratsinis, H.; Mavrogonatou, E.; Papadopoulou, A.; Kletsas, D. In vitro assessment of biocompatibility for orthodontic materials. In Research Methods in Orthodontics; Eliades, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–78. [Google Scholar]
- Ahangar, P.; Mills, S.J.; Smith, L.E.; Gronthos, S.; Cowin, A.J. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. npj Regen. Med. 2020, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Wielento, A.; Lagosz-Cwik, K.; Potempa, J.; Grabiec, A. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J. Dent. Res. 2023, 102, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.C.; Martínez, C.; Martínez, J.; McCulloch, C.A. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front. Physiol. 2019, 10, 270. [Google Scholar] [CrossRef]
- Weżgowiec, J.; Małysa, A.; Szlasa, W.; Kulbacka, J.; Chwiłkowska, A.; Ziętek, M.; Więckiewicz, M. Biocompatibility of 3D-printed vs. thermoformed and heat-cured intraoral appliances. Front. Bioeng. Biotechnol. 2024, 12, 1453888. [Google Scholar] [CrossRef]
- Wawrzynkiewicz, A.; Rozpedek-Kaminska, W.; Galita, G.; Lukomska-Szymanska, M.; Lapinska, B.; Sokolowski, J.; Majsterek, I. The cytotoxicity and genotoxicity of three dental universal adhesives—An in vitro study. Int. J. Mol. Sci. 2020, 21, 3950. [Google Scholar] [CrossRef]
- Xu, Y.; Xepapadeas, A.B.; Koos, B.; Geis-Gerstorfer, J.; Li, P.; Spintzyk, S. Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dent. Mater. 2021, 37, e314–e327. [Google Scholar] [CrossRef]
- Wada, J.; Wada, K.; Gibreel, M.; Wakabayashi, N.; Iwamoto, T.; Vallittu, P.K.; Lassila, L. Effect of Nitrogen Gas Post-Curing and Printer Type on the Mechanical Properties of 3D-Printed Hard Occlusal Splint Material. Polymers 2022, 14, 3971. [Google Scholar] [CrossRef]
- Manoukakis, T.; Nikolaidis, A.K.; Koulaouzidou, E.A. Polymerization kinetics of 3D-printed orthodontic aligners under different UV post-curing conditions. Prog. Orthod. 2024, 25, 42. [Google Scholar] [CrossRef]
- Krifka, S.; Spagnuolo, G.; Schmalz, G.; Schweikl, H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013, 34, 4555–4563. [Google Scholar] [CrossRef] [PubMed]
- Bationo, R.; Ablassé, R.; Diarra, A.; Beugré-Kouassi, M.; Jordana, F.; Beugré, J. In vitro Assessment of Cytotoxicity of Orthodontic and Dental Composite Resins using Human Gingival Fibroblast. Sch. J. Dent. Sci. 2019, 22, 352–355. [Google Scholar]
- Zinelis, S.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Eliades, T. Comparative analysis of mechanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod. Craniofacial Res. 2021, 25 (Suppl. 1), 336–341. [Google Scholar] [CrossRef]
- Erbe, C.; Ludwig, B.; Bleilöb, M. Unlocking the biological insights of 3D printed aligners: A look at current findings. Semin. Orthod. 2025 31, 139–143. [CrossRef]
- Dantagnan, C.-A.; Babajko, S.; Nassif, A.; Porporatti, A.; Attal, J.-P.; Dursun, E.; Nguyen, J.-F.; Bosco, J. Biocompatibility of direct printed clear aligners: A systematic review of in vitro studies. Int. Orthod. 2025, 23, 101028. [Google Scholar] [CrossRef]
- Adami, C.R.; Rodrigues, I.C.; Rodrigues, L.C.; Frassini, R.; Ely, M.R.; Beltrami, L.V.R.; Piazza, D.; Lazzari, L.K.; Júnior, H.L.O.; Zattera, A.J.; et al. 3D-printed resins used in occlusal splints modified with graphene nanoplatelets. Discov. Mater. 2025, 5, 14. [Google Scholar] [CrossRef]
- Bürgers, R.; Schubert, A.; Müller, J.; Krohn, S.; Rödiger, M.; Leha, A.; Wassmann, T. Cytotoxicity of 3D-printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts. Clin. Exp. Dent. Res. 2022, 8, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Šimunović, L.; Jurela, A.; Sudarević, K.; Bačić, I.; Haramina, T.; Meštrović, S. Influence of Post-Processing on the Degree of Conversion and Mechanical Properties of 3D-Printed Polyurethane Aligners. Polymers 2023, 16, 17. [Google Scholar] [CrossRef]
- Lambart, A.-L.; Xepapadeas, A.B.; Koos, B.; Li, P.; Spintzyk, S. Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity. Dent. Mater. 2022, 38, 1344–1353. [Google Scholar] [CrossRef]
Group | Time | IC50 (%) |
---|---|---|
Group 1 | 24 h | 185.98 |
48 h | 227.61 | |
72 h | 221.25 | |
Group 2 | 24 h | 186.95 |
48 h | 221.98 | |
72 h | 219.35 | |
Group 3 | 24 h | 202.16 |
48 h | 196.90 | |
72 h | 223.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bor, S.; Kaya, Y.; Demiral, A.; Güngörmüş, M. Post-Process Cytotoxicity of Resins in Clear Aligner Fabrication. Polymers 2025, 17, 1776. https://doi.org/10.3390/polym17131776
Bor S, Kaya Y, Demiral A, Güngörmüş M. Post-Process Cytotoxicity of Resins in Clear Aligner Fabrication. Polymers. 2025; 17(13):1776. https://doi.org/10.3390/polym17131776
Chicago/Turabian StyleBor, Sabahattin, Yeşim Kaya, Ayşe Demiral, and Mustafa Güngörmüş. 2025. "Post-Process Cytotoxicity of Resins in Clear Aligner Fabrication" Polymers 17, no. 13: 1776. https://doi.org/10.3390/polym17131776
APA StyleBor, S., Kaya, Y., Demiral, A., & Güngörmüş, M. (2025). Post-Process Cytotoxicity of Resins in Clear Aligner Fabrication. Polymers, 17(13), 1776. https://doi.org/10.3390/polym17131776