The Role of Surface Treatment and Coupling Agents for Adhesion between Stainless Steel (SUS) and Polyamide (PA) of Heterojunction Bilayer Composites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Surface Modifications of SUS Substrates
2.3. Compatibilization and Sample Fabrication for Lap Shear Strength Test
2.4. Characterization Techniques
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Atomic Force Microscopy (AFM)
2.4.3. X-ray Photoelectron Spectroscopy (XPS)
2.4.4. Contact Angle
2.4.5. Lap Shear Strength and Tensile Properties
3. Results and Discussion
3.1. Morphology (SEM)
3.2. Morphology (AFM)
3.3. Contact Angle
3.4. X-ray Photoelectron Spectroscopy (XPS)
3.5. Mechanical Properties (UTM)
3.6. Morphology of Fractured SUS and PA66 Surfaces (SEM and Camera Images)
3.7. Summary of Results
4. Conclusions
- ✓
- We extensively investigated the effectiveness of surface treatments and silane coupling agents in improving the mechanical properties of heterojunction bilayer composites, specifically SUS/PA66 composites.
- ✓
- We utilized SEM, AFM, and XPS analyses and mechanical testing to elucidate the significant impact of chemical modification on SUS surface characteristics and subsequent composite performance.
- ✓
- Surface treatments increased surface roughness and energy, enhancing wettability as evidenced by reduced contact angles in surface-treated and coupling agent-coated SUS samples and indicating improved interfacial interaction for composite performance.
- ✓
- A1S and ES demonstrated notable effectiveness in enhancing composite mechanical properties, and this is attributed to their polar groups akin to PA66, facilitating strong interfacial bonding through interfacial interactions with amide moieties.
- ✓
- Depth profiling and XPS surface analysis confirmed successful coupling agent applications, highlighting the specific functional groups contributing to the enhanced adhesion and mechanical properties and offering valuable insights for tailoring interfacial properties in future composite design for diverse industrial applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Ding, J.; Wei, J.; Luo, G.; Zhang, R.; Wang, B.; Sun, Y.; Zhang, J.; Shen, Q. Dynamic Response of Metal/Polymer Bilayer Composite with Optimized Surface Porosity by Experiment and Simulation. J. Mater. Res. Technol. 2023, 24, 1626–1637. [Google Scholar] [CrossRef]
- Pustan, M.; Dudescu, C.; Birleanu, C.; Rymuza, Z. Nanomechanical Studies and Materials Characterization of Metal/Polymer Bilayer MEMS Cantilevers. Int. J. Mater. Res. 2013, 104, 408–414. [Google Scholar] [CrossRef]
- Choi, G.S.; Jang, K.-S. Surface Treatment of Stainless Steel (SUS) to Improve Interfacial Adhesion of SUS/Polymer Hybrid Bilayer Composites. Int. J. Adhes. Adhes. 2024, 130, 103629. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced Lightweight Materials for Automobiles: A Review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Du, B.; Li, Q.; Zheng, C.; Wang, S.; Gao, C.; Chen, L. Application of Lightweight Structure in Automobile Bumper Beam: A Review. Materials 2023, 16, 967. [Google Scholar] [CrossRef]
- Brockmann, W. Durability of Adhesion Between Metals and Polymers. J. Adhes. 1989, 29, 53–61. [Google Scholar] [CrossRef]
- Ochoa-Putman, C.; Vaidya, U.K. Mechanisms of Interfacial Adhesion in Metal–Polymer Composites—Effect of Chemical Treatment. Compos. Part Appl. Sci. Manuf. 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Tee, D.I.; Mariatti, M.; Azizan, A.; See, C.H.; Chong, K.F. Effect of Silane-Based Coupling Agent on the Properties of Silver Nanoparticles Filled Epoxy Composites. Compos. Sci. Technol. 2007, 67, 2584–2591. [Google Scholar] [CrossRef]
- Yan, H.; Tian, G.; Sun, K.; Zhang, Y.; Zhang, Y. Effect of Silane Coupling Agent on the Polymer-Filler Interaction and Mechanical Properties of Silica-Filled NR. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 573–584. [Google Scholar] [CrossRef]
- Molitor, P.; Barron, V.; Young, T. Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review. Int. J. Adhes. Adhes. 2001, 21, 129–136. [Google Scholar] [CrossRef]
- Dayss, E.; Leps, G.; Meinhardt, J. Surface Modification for Improved Adhesion of a Polymer–Metal Compound. Surf. Coat. Technol. 1999, 116–119, 986–990. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Chang, T.-C. Influence of Si Content on the Intergranular Corrosion of SUS 309L Stainless Steels. Mater. Sci. Eng. A 2003, 359, 396–401. [Google Scholar] [CrossRef]
- Wei, X.; Hua, M.; Xue, Z.; Gao, Z.; Li, J. Evolution of Friction-Induced Microstructure of SUS 304 Meta-Stable Austenitic Stainless Steel and Its Influence on Wear Behavior. Wear 2009, 267, 1386–1392. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Z.; Cheng, S.; Liu, Z.; Han, J.; Fu, W. Processing Maps and Hot Workability of Super304H Austenitic Heat-Resistant Stainless Steel. Mater. Sci. Eng. A 2009, 517, 312–315. [Google Scholar] [CrossRef]
- Mineura, K.; Tanaka, K. Effect of Calcium Treatment on Hot Workability of Cr–Ni–0·7N Stainless Steel. Mater. Sci. Technol. 1990, 6, 743–748. [Google Scholar] [CrossRef]
- Kaladhar, M.; Subbaiah, K.V.; Rao, C.H.S. Machining of Austenitic Stainless Steels—A Review. Int. J. Mach. Mach. Mater. 2012, 12, 178–192. [Google Scholar] [CrossRef]
- Hong, I.T.; Koo, C.H. Antibacterial Properties, Corrosion Resistance and Mechanical Properties of Cu-Modified SUS 304 Stainless Steel. Mater. Sci. Eng. A 2005, 393, 213–222. [Google Scholar] [CrossRef]
- Prathab, B.; Subramanian, V.; Aminabhavi, T.M. Molecular Dynamics Simulations to Investigate Polymer–Polymer and Polymer–Metal Oxide Interactions. Polymer 2007, 48, 409–416. [Google Scholar] [CrossRef]
- Xin, Y.; Lou, Y.; Liu, H.; Wu, D.; Zhang, J. Liquid Metals and Disulfides: Interactive Metal-Polymer Hybrids for Flexible and Self-Healable Conductor. Adv. Mater. Technol. 2021, 6, 2000852. [Google Scholar] [CrossRef]
- Vaisman, L.; Wagner, H.D.; Marom, G. The Role of Surfactants in Dispersion of Carbon Nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37–46. [Google Scholar] [CrossRef]
- Seo, M.; Sato, N. Surface Characterization of Stainless Steels Prepared with Various Surface Treatments. Trans. Jpn. Inst. Met. 1980, 21, 805–810. [Google Scholar] [CrossRef]
- Kim, M.C.; Song, D.K.; Shin, H.S.; Baeg, S.-H.; Kim, G.S.; Boo, J.-H.; Han, J.G.; Yang, S.H. Surface Modification for Hydrophilic Property of Stainless Steel Treated by Atmospheric-Pressure Plasma Jet. Surf. Coat. Technol. 2003, 171, 312–316. [Google Scholar] [CrossRef]
- Lin, C.Y.; Cheng, C.W.; Ou, K.L. Micro/Nano-Structuring of Medical Stainless Steel Using Femtosecond Laser Pulses. Phys. Procedia 2012, 39, 661–668. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Conzatti, L.; Giunco, F.; Stagnaro, P.; Patrucco, A.; Tonin, C.; Marano, C.; Rink, M.; Marsano, E. Wool Fibres Functionalised with a Silane-Based Coupling Agent for Reinforced Polypropylene Composites. Compos. Part Appl. Sci. Manuf. 2014, 61, 51–59. [Google Scholar] [CrossRef]
- Lee, B.-Y.; Jeong, H.-G.; Kim, S.J.; Kang, B.-G.; Jang, K.-S. Physical and Chemical Compatibilization Treatment with Modified Aminosilanes for Aluminum/Polyamide Adhesion. ACS Omega 2022, 7, 23865–23874. [Google Scholar] [CrossRef] [PubMed]
- Sterman, S.; Marsden, J.G. Silane Coupling Agents. Available online: https://pubs.acs.org/doi/pdf/10.1021/ie50675a010 (accessed on 4 February 2024).
- Plueddemann, E.P. Nature of Adhesion Through Silane Coupling Agents. In Silane Coupling Agents; Plueddemann, E.P., Ed.; Springer: Boston, MA, USA, 1991; pp. 115–152. ISBN 978-1-4899-2070-6. [Google Scholar]
- Su, K.-H.; Lin, J.-H.; Lin, C.-C. Influence of Reprocessing on the Mechanical Properties and Structure of Polyamide 6. J. Mater. Process. Technol. 2007, 192–193, 532–538. [Google Scholar] [CrossRef]
- Rajesh, J.J.; Bijwe, J.; Tewari, U.S. Abrasive Wear Performance of Various Polyamides. Wear 2002, 252, 769–776. [Google Scholar] [CrossRef]
- Chen, J.; Gong, C.; Yang, C.; Yi, C. Flexible Preparation of Polyamide-6 Based Thermoplastic Elastomers via Amide Exchange. J. Mater. Sci. 2021, 56, 12018–12029. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, D.-F.; Ke, K.; Huang, Y.-H.; Yan, Y.; Yang, W.; Yin, B.; Yang, M.-B. Chemical-Resistant Polyamide 6/Polyketone Composites with Gradient Encapsulation Structure: An Insight into the Formation Mechanism. Polymer 2021, 212, 123173. [Google Scholar] [CrossRef]
- Burya, A.; Yeriomina, Y.; Naberezhnaya, O.; Arlamova, N. Thermal Resistance of Graphite Plastics Based on Aromatic Polyamide. Am. J. Anal. Chem. 2018, 9, 331. [Google Scholar] [CrossRef]
- Unal, H.; Mimaroglu, A. Friction and Wear Performance of Polyamide 6 and Graphite and Wax Polyamide 6 Composites under Dry Sliding Conditions. Wear 2012, 289, 132–137. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Sun, D.; Qi, X.; Yang, J.; Wang, Y. Achieving Electrical Insulation, High Thermal Conductivity and High Fracture Toughness in Polyamide 6/Carbon Nanofiber Composites through the Interfacial Welding Effect of Elastomer. Compos. Part Appl. Sci. Manuf. 2020, 128, 105671. [Google Scholar] [CrossRef]
- Deopura, B.L.; Padaki, N.V. Chapter 5—Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres. In Textiles and Fashion; Sinclair, R., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2015; pp. 97–114. ISBN 978-1-84569-931-4. [Google Scholar]
- Nguyen-Tran, H.-D.; Hoang, V.-T.; Do, V.-T.; Chun, D.-M.; Yum, Y.-J. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts. Materials 2018, 11, 429. [Google Scholar] [CrossRef]
- Latko, P.; Boczkowska, A. Electronic Applications of Polyamide Elastomers and Its Composites. In Flexible and Stretchable Electronic Composites; Ponnamma, D., Sadasivuni, K.K., Wan, C., Thomas, S., Al-Ali AlMa’adeed, M., Eds.; Springer Series on Polymer and Composite Materials; Springer International Publishing: Cham, Switzerland, 2016; pp. 135–160. ISBN 978-3-319-23663-6. [Google Scholar]
- Hernandez, R.J. Effect of Water Vapor on the Transport Properties of Oxygen through Polyamide Packaging Materials. In Water in Foods; Fito, P., Mulet, A., McKENNA, B., Eds.; Pergamon: Amsterdam, The Netherlands, 1994; pp. 495–507. ISBN 978-1-85861-037-5. [Google Scholar]
- Laad, M.S. Chapter 15—Polymers in Sports. In Polymer Science and Innovative Applications; AlMaadeed, M.A.A., Ponnamma, D., Carignano, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 485–523. ISBN 978-0-12-816808-0. [Google Scholar]
- McCall, E.; Keegan, J.; Foley, B. Primary Aromatic Amine Migration from Polyamide Kitchen Utensils: Method Development and Product Testing. Food Addit. Contam. Part A 2012, 29, 149–160. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Chang, B.P.; Mohanty, A.K.; Misra, M. Waste Valorization in Sustainable Engineering Materials: Reactive Processing of Recycled Carpets Waste with Polyamide 6. Polym. Test. 2022, 114, 107681. [Google Scholar] [CrossRef]
- Pharmaceutics|Free Full-Text|Wettability of Amino Acid-Functionalized PSMA Electrospun Fibers for the Modulated Release of Active Agents and Its Effect on Their Bioactivity. Available online: https://www.mdpi.com/1999-4923/15/6/1659 (accessed on 7 November 2023).
- Hofstetter, Y.J.; Vaynzof, Y. Quantifying the Damage Induced by X-Ray Photoelectron Spectroscopy Depth Profiling of Organic Conjugated Polymers. ACS Appl. Polym. Mater. 2019, 1, 1372–1381. [Google Scholar] [CrossRef]
Pristine | No Additive | A1S | ES | VS | A2S | |
---|---|---|---|---|---|---|
Surface roughness | 58.7 nm | 250 nm | 98.6 nm | 141.6 nm | 375 nm | 19.4 nm |
Contact angle | 70.01° | 38.8° | 12.6° | 23.5° | 40.1° | 5.1° |
Lap shear strength with treatment | - | 5.8 MPa | 11.9 MPa | 11.2 MPa | 5.9 MPa | 7.5 MPa |
Lap shear strength without treatment | - | 4.6 MPa | 7.0 MPa | 6.5 MPa | 3.2 MPa | 4.9 MPa |
Elongation at break with treatment | - | 3.0% | 3.4% | 3.3% | 2.7% | 2.6% |
Elongation at break without treatment | - | 1.8% | 2.6% | 2.5% | 1.9% | 2.3% |
Toughness with treatment | - | 626 J/M3 | 1570 J/M3 | 1418 J/M3 | 584 J/M3 | 914 J/M3 |
Toughness without treatment | - | 310 J/M3 | 702 J/M3 | 1282 J/M3 | 230 J/M3 | 359 J/M3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Song, S.-I.; Jang, K.-S. The Role of Surface Treatment and Coupling Agents for Adhesion between Stainless Steel (SUS) and Polyamide (PA) of Heterojunction Bilayer Composites. Polymers 2024, 16, 896. https://doi.org/10.3390/polym16070896
Lee H, Song S-I, Jang K-S. The Role of Surface Treatment and Coupling Agents for Adhesion between Stainless Steel (SUS) and Polyamide (PA) of Heterojunction Bilayer Composites. Polymers. 2024; 16(7):896. https://doi.org/10.3390/polym16070896
Chicago/Turabian StyleLee, Hayeong, Seung-In Song, and Keon-Soo Jang. 2024. "The Role of Surface Treatment and Coupling Agents for Adhesion between Stainless Steel (SUS) and Polyamide (PA) of Heterojunction Bilayer Composites" Polymers 16, no. 7: 896. https://doi.org/10.3390/polym16070896
APA StyleLee, H., Song, S. -I., & Jang, K. -S. (2024). The Role of Surface Treatment and Coupling Agents for Adhesion between Stainless Steel (SUS) and Polyamide (PA) of Heterojunction Bilayer Composites. Polymers, 16(7), 896. https://doi.org/10.3390/polym16070896