ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Preparation of ZIF8@MFC, ZIF67@MFC, and ZIF67-ZIF8@MFC and Zn/NC, Co/NC, and Co-Zn/NC
2.3. Preparation of Zn/NC, Co/NC, and Co-Zn/NC Composites
2.4. Physical Characterization
3. Results and Discussion
3.1. Morphology and Structure of Zn/NC, Co/NC, and Co-Zn/NC
3.2. Electrocatalytic Performance toward ORR of Zn/NC, Co/NC, and Co-Zn/NC Composites
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, J.; Zhu, Y.; Yao, X.; Yang, L.; Du, C.; Lv, Z.; Hou, M.; Zhang, S.; Ma, X.; Cao, C. Chemical vapor deposition towards atomically dispersed iron catalysts for efficient oxygen reduction. J. Mater. Chem. A 2023, 11, 5288–5295. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.; Wang, Q.; Wang, D.; Tao, X.; Zhang, T.; Feng, X.; Müllen, K. Highly efficient Co-N-C electrocatalysts with a porous structure for the oxygen reduction reaction. New Carbon Mater. 2023, 38, 976–988. [Google Scholar]
- Li, X.; Du, J.; Liu, J.; Xu, X.; Dai, Y.; Yu, Y.; Yuan, L.; Xie, J.; Zou, J. Microrods-evolved WO3 nanospheres with enriched oxygen-vacancies anchored on dodecahedronal CoO(Co2+)@carbon as durable catalysts for oxygen reduction/evolution reactions. Appl. Surf. Sci. 2022, 601, 154195. [Google Scholar] [CrossRef]
- Wang, H.; Wei, L.; Liu, J.; Shen, J. Hollow N-doped bimetal carbon spheres with superior ORR catalytic performance for microbial fuel cells. J. Colloid Interface Sci. 2020, 575, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, Z.; Wang, G.; Liu, H.; Ma, J. Electrostatic Spinning Strategy to Prepare Cage-like PAN-Fiber Network-Wrapped Co-N-C Structures for the Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2022, 5, 14155–14163. [Google Scholar] [CrossRef]
- Agarwal, S.; Yu, X.; Manthiram, A. A pair of metal organic framework (MOF)-derived oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts for zinc-air batteries. Mater. Today Energy 2020, 16, 100405. [Google Scholar] [CrossRef]
- Wang, G.; Deng, J.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. Turning on electrocatalytic oxygen reduction by creating robust Fe-Nx species in hollow carbon frameworks via in situ growth of Fe doped ZIFs on g-C3N4. Nanoscale 2020, 12, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, X.; Cui, X.; Shi, J. The ORR kinetics of ZIF-derived FeNC electrocatalysts. J. Catal. 2019, 372, 174–181. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Ding, S.; Lyu, Z.; Feng, S.; Tian, H.; Huyan, C.; Xu, M.; Li, T.; Du, D.; et al. 2D Single-Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction. Small Methods 2020, 4, 1900827. [Google Scholar] [CrossRef]
- Ma, S.; Han, Z.; Leng, K.; Liu, X.; Wang, Y.; Qu, Y.; Bai, J. Ionic Exchange of Metal-Organic Frameworks for Constructing Unsaturated Copper Single-Atom Catalysts for Boosting Oxygen Reduction Reaction. Small 2020, 16, 2001384. [Google Scholar] [CrossRef]
- Lai, Q.; Zhao, Y.; Liang, Y.; He, J.; Chen, J. In Situ Confinement Pyrolysis Transformation of ZIF-8 to Nitrogen-Enriched Meso-Microporous Carbon Frameworks for Oxygen Reduction. Adv. Funct. Mater. 2016, 26, 8334–8344. [Google Scholar] [CrossRef]
- Ye, Y.; Ca, F.; Yan, C.; Li, Y.; Wang, G.; Bao, X. Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. J. Energ. Chem. 2017, 26, 1174–1180. [Google Scholar] [CrossRef]
- Ali, A.; Iqbal, N.; Noor, T.; Imtiaz, U. Nanostructured Mn-doped Zn-N-C@reduced graphene oxide as high performing electrocatalyst for oxygen reduction reaction. J. Electroanal. Chem. 2022, 914, 116324. [Google Scholar] [CrossRef]
- Wang, H.; Grabstanowicz, L.; Barkholtz, H.; Rebollar, D.; Kaiser, Z.; Zhao, D.; Chen, B.; Liu, D. Impacts of Imidazolate Ligand on Performance of Zeolitic-Imidazolate Framework-Derived Oxygen Reduction Catalysts. ACS Energy Lett. 2019, 4, 2500–2507. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, L.; Yang, P.; Lu, X.; Liu, L.; Wang, D.; Zhang, J.; An, M. Solvent environment engineering to synthesize FeANAC nanocubes with densely Fe-Nx sites as oxygen reduction catalysts for Zn-air battery. J. Colloid Interface Sci. 2023, 638, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lai, Q.; Zhu, J.; Zhong, J.; Tang, Z.; Luo, Y.; Liang, Y. Controllable Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis. Small 2018, 14, 1704207. [Google Scholar] [CrossRef] [PubMed]
- Amiinu, I.S.; Liu, X.; Pu, Z.; Li, W.; Mu, S. From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1704638. [Google Scholar] [CrossRef]
- Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A.; Fischer, R.; Schuhmann, W.; Muhler, M. Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angew. Chem. Int. Ed. 2016, 55, 4087–4091. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Qin, Y.; Liu, Y.; Wang, J.; Peng, L.; Li, C. Crafting controllable Fe-based hierarchically organic-frameworks from bacterial cellulose nanofibers for efficient electrocatalysts in microbial fuel cells. J. Power Sources 2021, 512, 230522. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Kang, W.; Wang, P.; Zhang, H.; Zhang, X.; Yang, H.; Lin, B. Green synthesis of cellulose/graphene oxide/ZIF8 derived highly conductivity integrated film electrode for supercapacitor. Carbon 2021, 185, 599–607. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Z.; Liu, X.; Ren, J.; Xing, T.; Li, Z.; Li, X.; Chen, Y. Strategic design of cellulose nanofibers@zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe2O4/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall water-splitting. J. Power Sources 2022, 521, 230925. [Google Scholar] [CrossRef]
- Yadav, H.; Park, J.; Kang, H.; Kim, J.; Lee, J. Cellulose Nanofiber Composite with Bimetallic Zeolite Imidazole Framework for Electrochemical Supercapacitors. Nanomaterials 2021, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, W.; Pei, Y.; Liu, Y.; Qin, Y.; Zhang, X.; Wang, Q.; Yin, Y.; Guiver, D. Hierarchically Porous Co-N-C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. ChemSusChem 2019, 12, 4165–4169. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, G.; Wang, L.; Du, L.; Chen, G.; Gao, Y.; Ma, Y.; Du, C.; Cheng, X.; Zuo, P.; et al. ZIF-8 with Ferrocene Encapsulated: A Promising Precursor to Single-Atom Fe Embedded Nitrogen-Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. Small 2018, 14, 1704282. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Iqbal, N.; Kunwar, S.S.; Wahab, G.; Kasat, H.A.; Kannan, A.M. Pt-Co@NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 2018, 43, 3520–3526. [Google Scholar] [CrossRef]
- Lei, H.; Li, W.; Fei, J.; Guo, S.; Liu, Y.; Liu, Q.; Cheng, L.; Huang, Y. Ion-etched zeolitic imidazolate framework (ZIF) derived transition metal phosphides with a thin carbon shell as high-performance trifunctional catalyst for oxygen reduction, oxygen evolution and hydrogen evolution reactions. J. Environ. Chem. Eng. 2023, 11, 111549. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, S.; Tian, M.; Lu, J.; Chen, S. Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. J. Power Sources 2020, 450, 227659. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Cai, Z.; You, S.; Zou, J. Stable CuO with variable valence states cooperated with active Co2+ as catalyst/co-catalyst for oxygen reduction/methanol oxidation reactions. J. Colloid Interface Sci. 2021, 593, 345–358. [Google Scholar] [CrossRef]
- Liu, T.; Yang, F.; Cheng, G.; Luo, W. Reduced Graphene Oxide-Wrapped Co9-xFexS8/Co,Fe-N-C Composite as Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Small 2018, 14, 1703748. [Google Scholar] [CrossRef]
- Hanif, S.; Iqbal, N.; Shi, X.; Noor, T.; Ali, G.; Kannan, A.M. NiCo-N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell. Renew. Energ. 2020, 154, 508–516. [Google Scholar] [CrossRef]
- Tong, Y.; Liang, Y.; Hu, Y.; Shamsaei, E.; Wang, H. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. J. Alloy Compd. 2020, 816, 152684. [Google Scholar] [CrossRef]
- Lee, J.; Jang, J.; Kim, J.; Yoo, S. Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. J. Ind. Eng. Chem. 2021, 97, 466–475. [Google Scholar] [CrossRef]
- Ahmed, S.; Shim, J.; Sun, H.; Park, G. Transition Metals (Co or Ni) Encapsulated in Carbon Nanotubes Derived from Zeolite Imidazolate Frameworks (ZIFs) as Bifunctional Catalysts for the Oxygen Reduction and Evolution Reactions. Phys. Status Solidi A 2020, 217, 1900969. [Google Scholar] [CrossRef]
- Meng, H.; Liu, Y.; Liu, H.; Pei, S.; Yuan, X.; Li, H.; Zhang, Y. ZIF67@MFC-Derived Co/N-C@CNFs Interconnected Frameworks with Graphitic Carbon-Encapsulated Co Nanoparticles as Highly Stable and Efficient Electrocatalysts for Oxygen Reduction Reactions. ACS Appl. Mater. Interfaces 2020, 12, 41580–41589. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Chen, X.; Gong, T.; Liu, H.; Liu, Y.; Li, H.; Zhang, Y. N, P, S/Fe-codoped Carbon Derived from Feculae Bombycis as an Efficient Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem 2019, 11, 6015–6021. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Sun, S.; Hu, S.; Li, C.; Wang, Z. Core-Shell ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Electrocatalyst with Excellent Oxygen Reduction Performance for Zn-Air Batteries. ACS Appl. Mater. Interfaces 2023, 15, 59482–59493. [Google Scholar] [CrossRef] [PubMed]
- Gadipelli, S.; Zhao, T.; Shevlin, S.; Guo, Z. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci. 2016, 9, 1661–1667. [Google Scholar] [CrossRef]
- Wu, T.; Hu, Q.; Zhao, H.; Cheng, X.; He, H.; Dong, J.; Xu, J. Atomically Dispersed FeN2 at Silica Interfaces Coupled with Rich Nitrogen Doping-Hollow Carbon Nanospheres as Excellent Oxygen Reduction Reaction Catalysts. ACS Appl. Energy Mater. 2022, 5, 10849–10861. [Google Scholar] [CrossRef]
- Zhu, H.; Dai, Y.; Di, S.; Tian, L.; Wang, F.; Wang, Z.; Lu, Y. Bimetallic ZIF-Based PtCuCo/NC Electrocatalyst Pt Supported with an N-Doped Porous Carbon for Oxygen Reduction Reaction in PEM Fuel Cells. ACS Appl. Energy Mater. 2023, 6, 1575–1584. [Google Scholar] [CrossRef]
- Wang, H.; Yin, F.; Liu, N.; Kou, R.; He, X.; Sun, C.; Chen, B.; Liu, D.; Yin, H. Engineering Fe-Fe3C@Fe-N-C Active Sites and Hybrid Structures from Dual Metal-Organic Frameworks for Oxygen Reduction Reaction in H2-O2 Fuel Cell and Li-O2 Battery. Adv. Funct. Mater. 2019, 29, 1901531. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Liu, Y.; Ren, T.; Du, G.; Chen, T.; Yuan, Z. Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. J. Mater. Chem. A 2015, 3, 11725–11729. [Google Scholar] [CrossRef]
- Maouche, C.; Wang, Y.; Cheng, C.; Wang, W.; Li, Y.; Qureshi, W.A.; Huang, P.; Amjad, A.; Zhou, Y.; Yang, J. Sulfur doped Fe-N-C catalysts derived from Dual-Ligand zeolitic imidazolate framework for the oxygen reduction reaction. J. Colloid Interface Sci. 2022, 623, 146–154. [Google Scholar] [CrossRef]
- Kim, I.; Jang, D.; Kim, J.; Yoo, J.; Jong, S. Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced activity toward oxygen reduction reaction. Appl.Catal. B Environ. 2020, 260, 118192. [Google Scholar]
- Liu, Y.; Shen, H.; Jiang, H.; Li, W.; Li, J.; Li, Y.; Guo, Y. ZIF-derived graphene coated/Co9S8 nanoparticles embedded in nitrogen doped porous carbon polyhedrons as advanced catalysts for oxygen reduction reaction. Int. J. Hydrogen Energ. 2017, 42, 12978–12988. [Google Scholar] [CrossRef]
Sample | Co (wt. %) | Zn (wt. %) |
---|---|---|
1-Zn@NC | 0.03 | 14.68 |
2-Co-Zn@NC−10% | 6.37 | 4.52 |
3-Co-Zn@NC−20% | 13.03 | 2.59 |
4-Co-Zn@NC−30% | 17.64 | 0.70 |
5-Co-Zn@NC−50% | 25.34 | 0.33 |
6-Co@NC | 40.06 | 0.041 |
Sample | CV (EORR vs. RHE) | E0 (V vs. RHE) | E1/2 (V vs. RHE) |
---|---|---|---|
1-Zn@NC | 0.746 | 0.891 | 0.783 |
2-Co-Zn@NC−10% | 0.791 | 0.953 | 0.830 |
3-Co-Zn@NC−20% | 0.848 | 0.959 | 0.851 |
4-Co-Zn@NC−30% | 0.857 | 0.974 | 0.858 |
5-Co-Zn@NC−50% | 0.843 | 0.946 | 0.840 |
6-Co@NC | 0.831 | 0.952 | 0.852 |
7-Pt/C−20% | - | 0.950 | 0.825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Song, J.; Zhang, Y. ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions. Polymers 2024, 16, 505. https://doi.org/10.3390/polym16040505
Meng H, Song J, Zhang Y. ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions. Polymers. 2024; 16(4):505. https://doi.org/10.3390/polym16040505
Chicago/Turabian StyleMeng, Hongjie, Jingnan Song, and Yongming Zhang. 2024. "ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions" Polymers 16, no. 4: 505. https://doi.org/10.3390/polym16040505
APA StyleMeng, H., Song, J., & Zhang, Y. (2024). ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions. Polymers, 16(4), 505. https://doi.org/10.3390/polym16040505