Skip Content
You are currently on the new version of our website. Access the old version .
PolymersPolymers
  • Article
  • Open Access

12 February 2024

ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions

,
and
School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
*
Authors to whom correspondence should be addressed.
This article belongs to the Special Issue Advances and Applications in Cellulose-Based Polymers and Polymer Fibers

Abstract

The development of precious metal-free (M-N-C) catalysts for the oxygen reduction reaction (ORR) is considered crucial for reducing fuel cell costs. Herein, Co-Zn/NC interconnected frameworks with uniformly dispersed Co nanoparticles and graphitic carbon are designed and successfully synthesized through the in situ growth of zeolitic imidazolate frameworks (ZIF67 and ZIF8) along with biomass nano-microfibrillar cellulose (MFC), followed by pyrolysis. A Co-Zn/NC composite is prepared by combining Co-Zn/NC with a perfluorosulfonic acid polymer. The Co-Zn/NC composite catalyst exhibits excellent ORR catalytic activity (E0 = 0.974 V vs. RHE, E1/2 = 0.858 V vs. RHE) and good long-term durability, with 90% current retention after 10000s, surpassing that of commercial Pt/C in alkaline media. The hierarchical porous structure, coupled with the uniform distribution of Co nanoparticles and nitrogen doping, contributes to superior electrocatalytic performance, while the interconnected frameworks and graphitic carbon ensure good stability. Additionally, the Co-Zn/NC composite demonstrates promising applications in acidic media. This strategy offers significant guidance to develop advanced non-precious metal carbon-based catalysts for highly efficient and stable ORR.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.