Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of hBN Nanosheets
2.3. Functionalization of hBN Nanosheets
2.4. Fabrication of m-hBN/PUA Nanocomposites
- The m-hBN nanoplatelets were added to IBOA and blended using a vortex mixer.
- The appropriate amount of PUA and photocatalyst were then added to the mixture, which was blended for 1 h.
- After mixing, the blend was subjected to ultrasonication for 2 h and subsequently mixed again for 1 h using a vortex mixer.
2.5. Characterizations
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Kim, M.; Kim, J. Fabrication of UV-Curable Polyurethane Acrylate Composites Containing Surface-Modified Boron Nitride for Underwater Sonar Encapsulant Application. Ceram. Int. 2014, 40, 10933–10943. [Google Scholar] [CrossRef]
- Gavande, V.; Im, D.; Lee, W.K. Development of Highly Transparent UV-Curable Nylon 6 Nanofiber-Reinforced Polyurethane Acrylate Nanocomposite Coatings for Pre-Coated Metals. J. Appl. Polym. Sci. 2021, 138, 50614. [Google Scholar] [CrossRef]
- Hu, Y.; Shang, Q.; Bo, C.; Jia, P.; Feng, G.; Zhang, F.; Liu, C.; Zhou, Y. Synthesis and Properties of UV-Curable Polyfunctional Polyurethane Acrylate Resins from Cardanol. ACS Omega 2019, 4, 12505–12511. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, X.; Yang, Q.; Wang, C. Modification and Characterization of Urethane Acrylate Oligomers Used for UV-Curable Coatings. Polym. Bull. 2017, 74, 2497–2511. [Google Scholar] [CrossRef]
- Wang, X.; Xing, W.; Song, L.; Yu, B.; Hu, Y.; Yeoh, G.H. Preparation of UV-curable functionalized graphene/polyurethane acrylate nanocomposite with enhanced thermal and mechanical behaviors. React. Funct. Polym. 2013, 73, 854–858. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, X.; Zhu, J.; Liu, X.; Wang, Z.; Yan, J. UV-Curable Coatings from Multiarmed Cardanol-Based Acrylate Oligomers. ACS Sustain. Chem. Eng. 2015, 3, 1313–1320. [Google Scholar] [CrossRef]
- Choi, W.-C.; Gavande, V.; Kim, D.-Y.; Lee, W.-K. Study on Press Formability and Properties of UV-Curable Polyurethane Acrylate Coatings with Different Reactive Diluents. Polymers 2023, 15, 880. [Google Scholar] [CrossRef]
- Agnol, L.D.; Dias, F.T.G.; Ornaghi Jr, H.L.; Sangermano, M.; Bianchi, O. UV-Curable Waterborne Polyurethane Coatings: A State-of-the-Art and Recent Advances Review. Prog. Org. Coat. 2021, 154, 106156. [Google Scholar] [CrossRef]
- Fu, J.; Yu, H.; Wang, L.; Lin, L.; Khan, R.U. Preparation and Properties of UV-Curable Hyperbranched Polyurethane Acrylate Hard Coatings. Prog. Org. Coat. 2020, 144, 105635. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, X.; Lin, G.; Xi, L.; Yang, Y.; Lei, D.; Dong, H.; Su, J.; Cui, Y.; Liu, X. Preparation, Characterization and Application of UV-Curable Flexible Hyperbranched Polyurethane Acrylate. Polymers 2017, 9, 552. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Xing, W.; Yang, H.; Song, L.; Hu, Y. UV-Curable Functionalized Graphene Oxide/Polyurethane Acrylate Nanocomposite Coatings with Enhanced Thermal Stability and Mechanical Properties. Ind. Eng. Chem. Res. 2012, 51, 14629–14636. [Google Scholar] [CrossRef]
- Fu, J.; Wang, L.; Yu, H.; Haroon, M.; Haq, F.; Shi, W.; Wu, B.; Wang, L. Research Progress of UV-Curable Polyurethane Acrylate-Based Hardening Coatings. Prog. Org. Coat. 2019, 131, 82–99. [Google Scholar] [CrossRef]
- Gültekin, K.; Uğuz, G.; Özel, A. Improvements of the Structural, Thermal, and Mechanical Properties of Structural Adhesive with Functionalized Boron Nitride Nanoparticles. J. Appl. Polym. Sci. 2021, 138, 50491. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Z.; Tan, P.; Zhou, J.; Ma, X.; Shao, Y.; Wei, S.; Gao, Z. Siloxane-Modified UV-Curable Castor-Oil-Based Waterborne Polyurethane Superhydrophobic Coatings. Polymers 2023, 15, 4588. [Google Scholar] [CrossRef]
- Mistry, M.; Prajapati, V.; Dholakiya, B.Z. Redefining Construction: An In-Depth Review of Sustainable Polyurethane Applications. J. Polym. Environ. 2024, 32, 3448–3489. [Google Scholar] [CrossRef]
- Vardanyan, V.; Poaty, B.; Chauve, G.; Landry, V.; Galstian, T.; Riedl, B. Mechanical Properties of UV-Waterborne Varnishes Reinforced by Cellulose Nanocrystals. J. Coat. Technol. Res. 2014, 11, 841–852. [Google Scholar] [CrossRef]
- Al-Shannaq, R.; Farid, M.M. A Novel Graphite-PCM Composite Sphere with Enhanced Thermo-Physical Properties. Appl. Therm. Eng. 2018, 142, 401–409. [Google Scholar] [CrossRef]
- Fang, H.; Bai, S.-L.; Wong, C.P. “White Graphene”—Hexagonal Boron Nitride Based Polymeric Composites and Their Application in Thermal Management. Compos. Commun. 2016, 2, 19–24. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Saleem, M.F.; Chen, Z.; Sun, W. Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications. Materials 2022, 15, 4396. [Google Scholar] [CrossRef]
- Naclerio, A.E.; Kidambi, P.R. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. Adv. Mater. 2023, 35, 2207374. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, F.; Sun, M. Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Tian, W.; Fan, X.; Yao, Y. Polymer Composites Based on Hexagonal Boron Nitride and Their Application in Thermally Conductive Composites. RSC Adv. 2018, 8, 21948–21967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, C.; Wang, H.; Hu, M.; Li, H.; Liu, X. UV-Curable Coating Crosslinked by a Novel Hyperbranched Polyurethane Acrylate with Excellent Mechanical Properties and Hardness. RSC Adv. 2016, 6, 107942–107950. [Google Scholar] [CrossRef]
- Wattanakul, K.; Manuspiya, H.; Yanumet, N. Thermal Conductivity and Mechanical Properties of BN-Filled Epoxy Composite: Effects of Filler Content, Mixing Conditions, and BN Agglomerate Size. J. Compos. Mater. 2011, 45, 1967–1980. [Google Scholar] [CrossRef]
- Bayır, S.; Semerci, E.; Bedri, T.E. Preparation of Novel Thermal Conductive Nanocomposites by Covalent Bonding between Hexagonal Boron Nitride Nanosheet and Well-Defined Polymer Matrix. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106406. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Shang, Y.; Xu, P.; Pan, D.; Su, F.; Ji, Y.; Feng, Y.; Liu, Y.; Liu, C. Highly Thermally Conductive Polyvinyl Alcohol/Boron Nitride Nanocomposites with Interconnection Oriented Boron Nitride Nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, A.; Kant, C.; Chu, C.W.; Katiyar, M.; Lin, H. Transparent, Stretchable, and Self-Healable Gas Barrier Films with 2D Nanoplatelets for Flexible Electronic Device Packaging Applications. Adv. Mater. Interfaces 2023, 10, 2202093. [Google Scholar] [CrossRef]
- Misra, D.; Nemane, V.; Mukhopadhyay, S.; Chatterjee, S. Effect of HBN and SiC Addition on Laser Assisted Processing of Ceramic Matrix Composite Coatings. Ceram. Int. 2020, 46, 9758–9764. [Google Scholar] [CrossRef]
- Che, Y.; Liu, C.; Li, N.; Guo, W.; Xi, M.; Zhang, S.; Wang, Z. UV Curing Polyurethane—Acrylate Composites as Full Filling Thermal Interface Materials. N. J. Chem. 2022, 46, 7979–7986. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Peng, C.; Ren, S.; Yuan, C.; Luo, W.; Chen, G.; He, F.; Dai, L. UV-Curable Waterborne Polyurethane Dispersions Modified with a Trimethoxysilane End-Capping Agent and Edge-Hydroxylated Boron Nitride. J. Coat. Technol. Res. 2019, 16, 1479–1492. [Google Scholar] [CrossRef]
- Oh, S.; Gavande, V.; Lee, W.-K. Synthesis and Characteristics of Cardanol-Based Acrylates as Reactive Diluents in UV-Curing Coatings. Mol. Cryst. Liq. Cryst. 2023, 760, 68–75. [Google Scholar] [CrossRef]
- Queiroz, S.M.; Medeiros, F.S.; de Vasconcelos, C.K.B.; Silva, G.G. H-BN Nanosheets Obtained by Mechanochemical Processes and Its Application in Lamellar Hybrid with Graphene Oxide. Nanotechnology 2021, 33, 35714. [Google Scholar] [CrossRef] [PubMed]
- Magaletti, F.; Prioglio, G.; Giese, U.; Barbera, V.; Galimberti, M. Hexagonal Boron Nitride as Filler for Silica-Based Elastomer Nanocomposites. Nanomaterials 2023, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.R.; Sharma, R.; Bawari, S.; Vivek, S.; Rastogi, P.K.; Nair, S.S.; Grage, S.L.; Narayanan, T.N. Room-Temperature Ferromagnetic Wide Bandgap Semiconducting Fluorinated Graphene-HBN Vertical Heterostructures. Mater. Today Phys. 2021, 21, 100547. [Google Scholar] [CrossRef]
- Ollik, K.; Lieder, M. Review of the Application of Graphene-Based Coatings as Anticorrosion Layers. Coatings 2020, 10, 883. [Google Scholar] [CrossRef]
- Garro Mena, L.; Hohn, K.L. Modification of Hexagonal Boron Nitride by Thermal Treatment. J. Mater. Sci. 2021, 56, 7298–7307. [Google Scholar] [CrossRef]
- Cahill, J.T.; Du Frane, W.L.; Sio, C.K.; King, G.C.S.; Soderlind, J.C.; Lu, R.; Worsley, M.A.; Kuntz, J.D. Transformation of Boron Nitride from Cubic to Hexagonal under 1-Atm Helium. Diam. Relat. Mater. 2020, 109, 108078. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.; Ye, X.; Ye, W.; Hu, J.; Xu, C.; Qiu, X. Stable Colloidal Boron Nitride Nanosheet Dispersion and Its Potential Application in Catalysis. J. Mater. Chem. A 2013, 1, 12192–12197. [Google Scholar] [CrossRef]
- Ali, M.; Abdala, A. Large Scale Synthesis of Hexagonal Boron Nitride Nanosheets and Their Use in Thermally Conductive Polyethylene Nanocomposites. Int. J. Energy Res. 2022, 46, 10143–10156. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Hao, M.; Li, M.; Zhou, Y.; Sun, W.; Wang, J.; Cheng, Y. Novel Multifunctional Melamine Borate-Boron Nitride Nanosheets/Epoxy Composites with Enhanced Thermal Conductivity, Flame Retardancy and Satisfying Electrical Insulation. Compos. Part A Appl. Sci. Manuf. 2023, 169, 107495. [Google Scholar] [CrossRef]
- Zare, Y. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Zhu, A.; Shi, Z.; Cai, A.; Zhao, F.; Liao, T. Synthesis of Core–Shell PMMA–SiO2 Nanoparticles with Suspension–Dispersion–Polymerization in an Aqueous System and Its Effect on Mechanical Properties of PVC Composites. Polym. Test. 2008, 27, 540–547. [Google Scholar] [CrossRef]
- Kontou, E.; Christopoulos, A.; Koralli, P.; Mouzakis, D.E. The Effect of Silica Particle Size on the Mechanical Enhancement of Polymer Nanocomposites. Nanomaterials 2023, 13, 1095. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef] [PubMed]
- Keledi, G.; Hári, J.; Pukánszky, B. Polymer Nanocomposites: Structure, Interaction, and Functionality. Nanoscale 2012, 4, 1919–1938. [Google Scholar] [CrossRef] [PubMed]
- Gavande, V.; Nagappan, S.; Seo, B.; Cho, Y.S.; Lee, W.K. Transparent Nylon 6 Nanofibers-Reinforced Epoxy Matrix Composites with Superior Mechanical and Thermal Properties. Polym. Test. 2023, 122, 108002. [Google Scholar] [CrossRef]
- Rau, S.R.; Vengadaesvaran, B.; Ramesh, K.; Arof, A.K. Studies on the Adhesion and Corrosion Performance of an Acrylic-Epoxy Hybrid Coating. J. Adhes. 2012, 88, 282–293. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, D.; Tian, Y.; Jiang, L. Superhydrophilic Coating Induced Temporary Conductivity for Low-Cost Coating and Patterning of Insulating Surfaces. Adv. Funct. Mater. 2016, 26, 9018–9025. [Google Scholar] [CrossRef]
Sample | Ultimate Tensile Strength (MPa) | Elongation @ Break | Young’s Modulus (MPa) | Gel Content (%) |
---|---|---|---|---|
PUA films | 17.50 ± 1.2 | 94.85 ± 8.3 | 121.38 ± 9.8 | 98.1 |
m-hBN0.1/PUA | 20.93 ± 0.9 | 119.33 ± 8.1 | 168.76 ± 12.3 | 97.9 |
m-hBN0.2/PUA | 23.07 ± 1.3 | 130.89 ± 8.1 | 166.70 ± 6.3 | 98.5 |
m-hBN0.5/PUA | 26.37 ± 2.1 | 113.16 ± 5.9 | 178.72 ± 15.8 | 97.3 |
m-hBN1/PUA | 22.64 ± 1.0 | 110.16 ± 3.6 | 213.93 ± 10.0 | 98.0 |
m-hBN2/PUA | 21.67 ± 1.7 | 116.95 ± 8.5 | 240.13 ± 22.1 | 97.5 |
Sample | T5% Weight Loss (°C) | T10% Weight Loss (°C) | T50% Weight Loss (°C) | Char Residual at 600 °C (Weight %) |
---|---|---|---|---|
PUA film | 201 | 290 | 330 | 1.96 |
m-hBN0.5/PUA | 215 | 291 | 337 | 2.45 |
m-hBN2/PUA | 214 | 288 | 329 | 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavande, V.; Mahalingam, S.; Kim, J.; Lee, W.-K. Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties. Polymers 2024, 16, 2544. https://doi.org/10.3390/polym16172544
Gavande V, Mahalingam S, Kim J, Lee W-K. Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties. Polymers. 2024; 16(17):2544. https://doi.org/10.3390/polym16172544
Chicago/Turabian StyleGavande, Vishal, Shanmugam Mahalingam, Junghwan Kim, and Won-Ki Lee. 2024. "Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties" Polymers 16, no. 17: 2544. https://doi.org/10.3390/polym16172544
APA StyleGavande, V., Mahalingam, S., Kim, J., & Lee, W. -K. (2024). Optimization of UV-Curable Polyurethane Acrylate Coatings with Hexagonal Boron Nitride (hBN) for Improved Mechanical and Adhesive Properties. Polymers, 16(17), 2544. https://doi.org/10.3390/polym16172544