A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding
Abstract
:1. Introduction
2. The Mechanism of Electromagnetic Interference Shielding
3. Factors Influencing the Electrical Percolation Threshold in CPCs
4. The Methodology for Achieving Effective Conductive Pathways
4.1. Conductive Filler with Metal Coating
4.2. Synergistic Effect of Multiple Fillers
4.3. Directional Dispersion of Fillers
5. Advances in CPCs in Electromagnetic Shielding Field
6. Challenge
7. Summary and Prospects
Funding
Conflicts of Interest
References
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Thomassin, J.M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Jin, S.H.; Zou, H.M.; Li, L.J.; Ma, X.L.; Lv, G.; Gao, F.; Lv, X.J.; Shu, Q.H. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580. [Google Scholar] [CrossRef]
- Wang, M.; Tang, X.H.; Cai, J.H.; Wu, H.; Shen, J.B.; Guo, S.Y. Fabrication, mechanisms and perspectives of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402. [Google Scholar] [CrossRef]
- Joshi, A.; Datar, S. Carbon nanostructure composite for electromagnetic interference shielding. Pramana 2015, 84, 1099–1116. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Thermally Conducting Polymer Composites with EMI Shielding: A review. J. Electron. Mater. 2020, 49, 1749–1764. [Google Scholar] [CrossRef]
- Hsiao, S.T.; Ma, C.C.M.; Tien, H.W.; Liao, W.H.; Wang, Y.S.; Li, S.M.; Huang, Y.C. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 2013, 60, 57–66. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Pan, Y.J.; Lin, J.H. Polypropylene/High-Density Polyethylene/Carbon Fiber Composites: Manufacturing Techniques, Mechanical Properties, and Electromagnetic Interference Shielding Effectiveness. Fibers Polym. 2017, 18, 155–161. [Google Scholar] [CrossRef]
- Huang, Y.; Kormakov, S.; He, X.X.; Gao, X.L.; Zheng, X.T.; Liu, Y.; Sun, J.Y.; Wu, D.M. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers 2019, 11, 187. [Google Scholar] [CrossRef]
- Liang, C.B.; Gu, Z.J.; Zhang, Y.L.; Ma, Z.L.; Qiu, H.; Gu, J.W. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review. Nano-Micro Lett. 2021, 13, 181. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S. The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 2012, 72, 1459–1476. [Google Scholar] [CrossRef]
- Sohi, N.J.S.; Rahaman, M.; Khastgir, D. Dielectric Property and Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate-Based Conductive Composites: Effect of Different Type of Carbon Fillers. Polym. Compos. 2011, 32, 1148–1154. [Google Scholar] [CrossRef]
- Retailleau, C.; Eddine, J.A.; Ndagijimana, F.; Haddad, F.; Bayard, B.; Sauviac, B.; Alcouffe, P.; Fumagalli, M.; Bounor-Legaré, V.; Serghei, A. Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials. Compos. Sci. Technol. 2022, 221, 109351. [Google Scholar] [CrossRef]
- Mamunya, Y.; Matzui, L.; Vovchenko, L.; Maruzhenko, O.; Oliynyk, V.; Pusz, S.; Kumanek, B.; Szeluga, U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019, 170, 51–59. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Huang, M.L.; Wang, M. Effect of interfacial morphology on electromagnetic shielding performance of poly (L-lactide)/polydimethylsiloxane/multi-walled carbon nanotube composites with honeycomb like conductive networks. Polym. Compos. 2024, 45, 2253–2267. [Google Scholar] [CrossRef]
- Dun, D.X.; Luo, J.Y.; Wang, M.H.; Wang, X.R.; Zhou, H.F.; Wang, X.D.; Wen, B.Y.; Zhang, Y.X. Electromagnetic Interference Shielding Foams Based on Poly (vinylidene fluoride)/Carbon Nanotubes Composite. Macromol. Mater. Eng. 2021, 306, 2100468. [Google Scholar] [CrossRef]
- Shen, B.; Li, Y.; Zhai, W.T.; Zheng, W.G. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057. [Google Scholar] [CrossRef]
- Wu, J.H.; Chung, D.D.L. Combined use of magnetic and electrically conductive fillers in a polymer matrix for electromagnetic interference shielding. J. Electron. Mater. 2008, 37, 1088–1094. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.N.; Liu, M.Y.; Li, J.H.; Zhou, X. Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macromol. Mater. Eng. 2021, 306, 2100032. [Google Scholar] [CrossRef]
- Reshi, H.A.; Singh, A.P.; Pillai, S.; Para, T.A.; Dhawan, S.K.; Shelke, V. X-band frequency response and electromagnetic interference shielding in multiferroic BiFeO3 nanomaterials. Appl. Phys. Lett. 2016, 109, 142904. [Google Scholar] [CrossRef]
- Wang, P.; Chong, H.D.; Zhang, J.J.; Yang, Y.H.; Lu, H.B. Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite. Compos. Sci. Technol. 2018, 158, 147–155. [Google Scholar] [CrossRef]
- Huang, J.R.; Mao, C.; Zhu, Y.T.; Jiang, W.; Yang, X.D. Control of carbon nanotubes at the interface of a co−continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 2014, 73, 267–274. [Google Scholar] [CrossRef]
- Gulrez, S.K.H.; Mohsin, M.E.A.; Shaikh, H.; Anis, A.; Pulose, A.M.; Yadav, M.K.; Qua, E.H.P.; Al-Zahrani, S.M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35, 900–914. [Google Scholar] [CrossRef]
- Khan, T.; Irfan, M.S.; Ali, M.; Dong, Y.; Ramakrishna, S.; Umer, R. Insights to low electrical percolation thresholds of carbon−based polypropylene nanocomposites. Carbon 2021, 176, 602–631. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Gelves, G.A.; Sundararaj, U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Compos. Part A Appl. Sci. Manuf. 2011, 42, 92–97. [Google Scholar] [CrossRef]
- Xu, Y.D.; Yang, Y.Q.; Duan, H.J.; Gao, J.F.; Yan, D.X.; Zhao, G.Z.; Liu, Y.Q. Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Appl. Surf. Sci. 2018, 455, 856–863. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, W.R.; Chen, S.C.; Chien, R.D. Optimum injection molding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite. Int. Commun. Heat Mass Transf. 2008, 35, 744–749. [Google Scholar] [CrossRef]
- Shajari, S.; Arjmand, M.; Pawar, S.P.; Sundararaj, U.; Sudak, L.J. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Compos. Part B Eng. 2019, 165, 662–670. [Google Scholar] [CrossRef]
- Liang, L.Y.; Xu, P.H.; Wang, Y.F.; Shang, Y.; Ma, J.M.; Su, F.M.; Feng, Y.Z.; He, C.G.; Wang, Y.M.; Liu, C.T. Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2020, 395, 125209. [Google Scholar] [CrossRef]
- Jia, L.J.; Phule, A.D.; Geng, Y.; Wen, S.B.; Li, L.; Zhang, Z.X. Microcellular Conductive Carbon Black or Graphene/PVDF Composite Foam with 3D Conductive Channel: A Promising Lightweight, Heat-Insulating, and EMI-Shielding Material. Macromol. Mater. Eng. 2021, 306, 2000759. [Google Scholar] [CrossRef]
- Sheng, A.; Ren, W.; Yang, Y.Q.; Yan, D.X.; Duan, H.J.; Zhao, G.Z.; Liu, Y.Q.; Li, Z.M. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105692. [Google Scholar] [CrossRef]
- Aal, N.A.; El-Tantawy, F.; Al-Hajry, A.; Bououdina, M. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites. Polym. Compos. 2008, 29, 125–132. [Google Scholar] [CrossRef]
- Alam, F.E.; Yu, J.; Shen, D.; Dai, W.; Li, H.; Zeng, X.; Yao, Y.; Du, S.; Jiang, N.; Lin, C.-T. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. Polymers 2017, 9, 662. [Google Scholar] [CrossRef]
- Joshi, A.; Bajaj, A.; Singh, R.; Alegaonkar, P.S.; Balasubramanian, K.; Datar, S. Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 2013, 24, 455705. [Google Scholar] [CrossRef]
- Vuluga, D.; Thomassin, J.M.; Molenberg, I.; Huynen, I.; Gilbert, B.; Jérôme, C.; Alexandre, M.; Detrembleur, C. Straightforward synthesis of conductive graphene/polymer nanocomposites from graphite oxide. Chem. Commun. 2011, 47, 2544–2546. [Google Scholar] [CrossRef]
- Verma, D.; Gope, P.C.; Shandilya, A.; Gupta, A. Mechanical-Thermal-Electrical and Morphological Properties of Graphene Reinforced Polymer Composites: A Review. Trans. Indian Inst. Met. 2014, 67, 803–816. [Google Scholar] [CrossRef]
- Kim, K.H.; Jang, J.U.; Yoo, G.Y.; Kim, S.H.; Oh, M.J.; Kim, S.Y. Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets. Materials 2023, 16, 5329. [Google Scholar] [CrossRef]
- Oseli, A.; Tomkovic, T.; Hatzikiriakos, S.G.; Vesel, A.; Arzensek, M.; Rojac, T.; Mihelcic, M.; Perse, L.S. Carbon nanotube network formation and configuration/morphology on reinforcing and conductive performance of polymer-based nanocomposites. Compos. Sci. Technol. 2023, 237, 110010. [Google Scholar] [CrossRef]
- Lee, D.K.; Yoo, J.; Kim, H.; Park, S.H. Investigation of electromagnetic interference shielding effectiveness and electrical percolation of carbon nanotube polymer composites with various aspect ratios. Carbon Lett. 2023, 34, 133–140. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. X−band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D Appl. Phys. 2013, 46, 035304. [Google Scholar] [CrossRef]
- Zhao, S.G.; Zhao, H.J.; Li, G.J.; Dai, K.; Zheng, G.Q.; Liu, C.T.; Shen, C.Y. Synergistic effect of carbon fibers on the conductive properties of a segregated carbon black/polypropylene composite. Mater. Lett. 2014, 129, 72–75. [Google Scholar] [CrossRef]
- Saleem, A.; Frormann, L.; Iqbal, A. Mechanical, thermal and electrical resisitivity properties of thermoplastic composites filled with carbon fibers and carbon particles. J. Polym. Res. 2007, 14, 121–127. [Google Scholar] [CrossRef]
- Zhao, S.G.; Lou, D.D.; Li, G.J.; Zheng, Y.J.; Zheng, G.Q.; Dai, K.; Liu, C.T.; Jiang, Y.L.; Shen, C.Y. Bridging the segregated structure in conductive polypropylene composites: An effective strategy to balance the sensitivity and stability of strain sensing performances. Compos. Sci. Technol. 2018, 163, 18–25. [Google Scholar] [CrossRef]
- Tang, Z.H.; Wang, D.Y.; Li, Y.Q.; Huang, P.; Fu, S.Y. Modeling the synergistic electrical percolation effect of carbon nanotube/graphene/polymer composites. Compos. Sci. Technol. 2022, 225, 109496. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, D.Y. Low Percolation Threshold and High Conductivity in Carbon Black Filled Polyethylene and Polypropylene Composites. J. Appl. Polym. Sci. 2010, 115, 3527–3534. [Google Scholar] [CrossRef]
- Huang, M.L.; Shi, Y.D.; Wang, M. A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites. Polym. Compos. 2023, 44, 1188–1200. [Google Scholar] [CrossRef]
- Mao, C.; Zhu, Y.T.; Jiang, W. Design of Electrical Conductive Composites: Tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends. ACS Appl. Mater. Interfaces 2012, 4, 5281–5286. [Google Scholar] [CrossRef]
- Sumita, M.; Sakata, K.; Asal, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265–271. [Google Scholar] [CrossRef]
- Mondal, R.K.; Dubey, K.A.; Bhardwaj, Y.K. Role of the interface on electron transport in electro-conductive polymer-matrix composite: A review. Polym. Compos. 2021, 42, 2614–2628. [Google Scholar] [CrossRef]
- Haslam, M.D.; Raeymaekers, B. A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Compos. Part B Eng. 2013, 55, 16–21. [Google Scholar] [CrossRef]
- Cai, D.Y.; Song, M. Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 2010, 20, 7906–7915. [Google Scholar] [CrossRef]
- Xing, D.; Lu, L.S.; Teh, K.S.; Wan, Z.P.; Xie, Y.X.; Tang, Y. Highly flexible and ultra-thin Ni−plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 2018, 132, 32–41. [Google Scholar] [CrossRef]
- Guo, C.; Duan, H.J.; Dong, C.Y.; Zhao, G.Z.; Liu, Y.Q.; Yang, Y.Q. Preparation of the polypropylene/nickel coated glass fibers conductive composites with a low percolation threshold. Mater. Lett. 2015, 143, 124–127. [Google Scholar] [CrossRef]
- Bryant, N. Using Long Fiber Nickel Coated Carbon Fiber (LFNCCF) to produce Light Weight EMI Shielding Plastic Composites. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (EMC), Denver, CO, USA, 5–9 August 2013; pp. 371–375. [Google Scholar]
- Shui, X.; Chung, D.D.L. Submicron Nickel Filaments Made by Electroplating Carbon Filaments as a New Filler Material for Electromagnetic Interference Shielding. J. Electron. Mater. 1995, 24, 107–113. [Google Scholar] [CrossRef]
- Shui, X.; Chung, D.D.L. Submicron Diameter Nickel Filaments and Their Polymer-Matrix Composites. J. Mater. Sci. 2000, 35, 1773–1785. [Google Scholar] [CrossRef]
- Shui, X.; Chung, D.D.L. 0.4 μm Diameter Nickel-Filament Silicone-Matrix Resilient Composites for Electromagnetic Interference Shielding. J. Electron. Packag. 1997, 119, 236–238. [Google Scholar] [CrossRef]
- Xu, D.W.; Chen, W.H.; Liu, P.J. Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Compos. Sci. Technol. 2020, 199, 108355. [Google Scholar] [CrossRef]
- Lee, T.W.; Lee, S.E.; Jeong, Y.G. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers. ACS Appl. Mater. Interfaces 2016, 8, 13123–13132. [Google Scholar] [CrossRef]
- Wen, M.; Sun, X.J.; Su, L.; Shen, J.B.; Li, J.; Guo, S.Y. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 2012, 53, 1602–1610. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Huang, Y.J.; Liao, X.; Niu, Y.H. Synergistic effect of multiwalled carbon nanotubes and carbon black on rheological behaviors and electrical conductivity of hybrid polypropylene nanocomposites. Polym. Compos. 2018, 39, E723–E732. [Google Scholar] [CrossRef]
- Zou, F.F.; Liao, X.; Song, P.W.; Shi, S.Z.; Chen, J.; Wang, X.H.; Li, G.X. Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends. Nano Res. 2023, 16, 613–623. [Google Scholar] [CrossRef]
- Zou, F.F.; Liao, X.; Lv, C.F.; Guo, F.M.; Shi, S.Z.; Wang, X.H.; Li, G.X. Supercritical carbon dioxide assisted phase coarsening of double-percolated polycaprolactone/polystyrene/multi-wall carbon nanotube composites for improved electrical performance and electromagnetic interference shielding. J. Supercrit. Fluids 2023, 199, 105961. [Google Scholar] [CrossRef]
- Liu, Y.F.; He, H.Z.; Tian, G.D.; Wang, Y.; Gao, J.; Wang, C.; Xu, L.; Zhang, H. Morphology evolution to form double percolation polylactide/polycaprolactone/MWCNTs nanocomposites with ultralow percolation threshold and excellent EMI shielding. Compos. Sci. Technol. 2021, 214, 108956. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.Y.; Yin, B.; Yang, M.B. An Effective Strategy to Achieve Ultralow Electrical Percolation Threshold with CNTs Anchoring at the Interface of PVDF/PS Bi-Continuous Structures to Form an Interfacial Conductive Layer. Macromol. Mater. Eng. 2020, 305, 1900835. [Google Scholar] [CrossRef]
- Tu, C.; Nagata, K.; Yan, S.K. Dependence of Electrical Conductivity on Phase Morphology for Graphene Selectively Located at the Interface of Polypropylene/Polyethylene Composites. Nanomaterials 2022, 12, 509. [Google Scholar] [CrossRef]
- Strugova, D.; Ferreira, J.C.; David, É.; Demarquette, N.R. Ultra-Low Percolation Threshold Induced by Thermal Treatments in Co−Continuous Blend-Based PP/PS/MWCNTs Nanocomposites. Nanomaterials 2021, 11, 1620. [Google Scholar] [CrossRef]
- Chen, J.W.; Cui, X.H.; Sui, K.Y.; Zhu, Y.T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99–105. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, V. Development of lightweight polypropylene/carbon fiber composites for its application in shielding of electromagnetic interference in X−band. J. Mater. Sci. Mater. Electron. 2020, 31, 14088–14100. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, V. Analysis of mechanical, thermal, electrical and EMI shielding properties of graphite/carbon fiber reinforced polypropylene composites prepared via a twin screw extruder. J. Appl. Polym. Sci. 2022, 139, 51444. [Google Scholar] [CrossRef]
- Lecocq, H.; Garois, N.; Lhost, O.; Girard, P.F.; Cassagnau, P.; Serghei, A. Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Compos. Part B Eng. 2020, 189, 107866. [Google Scholar] [CrossRef]
- Shi, Y.D.; Li, J.; Tan, Y.J.; Chen, Y.F.; Wang, M. Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos. Sci. Technol. 2019, 170, 70–76. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites. Polym. Compos. 2022, 43, 3708–3715. [Google Scholar] [CrossRef]
- Ju, J.; Kuang, T.; Ke, X.; Zeng, M.; Chen, Z.; Zhang, S.; Peng, X. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 2020, 193, 108116. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.Y.; Koo, C.M.; Kim, W.N. Effects of processing methods on the electrical conductivity, electromagnetic parameters, and EMI shielding effectiveness of polypropylene/nickel-coated carbon fiber composites. Macromol. Res. 2017, 25, 936–943. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Zhou, C.-G.; Sun, W.-J.; Wang, T.; Jia, L.-C.; Yan, D.-X.; Li, Z.-M. Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Compos. Sci. Technol. 2020, 197, 108253. [Google Scholar] [CrossRef]
- Rahaman, M.; Al Ghufais, I.A.; Periyasami, G.; Aldalbahi, A. Recycling and Reusing Polyethylene Waste as Antistatic and Electromagnetic Interference Shielding Materials. Int. J. Polym. Sci. 2020, 2020, 6421470. [Google Scholar] [CrossRef]
- Jia, L.-C.; Yan, D.-X.; Cui, C.-H.; Jiang, X.; Ji, X.; Li, Z.-M. Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 2015, 3, 9369–9378. [Google Scholar] [CrossRef]
- Mondal, S.; Ravindren, R.; Bhawal, P.; Shin, B.; Ganguly, S.; Nah, C.; Das, N.C. Combination effect of carbon nanofiber and ketjen carbon black hybrid nanofillers on mechanical, electrical, and electromagnetic interference shielding properties of chlorinated polyethylene nanocomposites. Compos. Part B Eng. 2020, 197, 108071. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Met. 2015, 205, 78–84. [Google Scholar] [CrossRef]
- Yu, W.C.; Xu, J.Z.; Wang, Z.G.; Huang, Y.F.; Yin, H.M.; Xu, L.; Chen, Y.W.; Yan, D.X.; Li, Z.M. Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2018, 110, 237–245. [Google Scholar] [CrossRef]
- Cui, C.H.; Yan, D.X.; Pang, H.; Jia, L.C.; Bao, Y.; Jiang, X.; Li, Z.M. Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chin. J. Polym. Sci. 2016, 34, 1490–1499. [Google Scholar] [CrossRef]
- Cheng, H.B.; Bai, L.S.; Lin, G.L.; Zhang, X.Y.; Wu, C.; Ma, S.L.; Liu, X.H.; Huang, B.Q.; Chen, Q.H.; Qian, Q.R.; et al. Hugely improved electromagnetic interference shielding and mechanical properties for UHMWPE composites via constructing an oriented conductive carbon nanostructures (CNS) networks. J. Mater. Res. Technol. 2023, 26, 6520–6531. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites. J. Phys. D Appl. Phys. 2016, 49, 195302. [Google Scholar] [CrossRef]
- Bera, R.; Maiti, S.; Khatua, B.B. High electromagnetic interference shielding with high electrical conductivity through selective dispersion of multiwall carbon nanotube in poly (ε-caprolactone)/MWCNT composites. J. Appl. Polym. Sci. 2015, 132, 42161. [Google Scholar] [CrossRef]
- Tang, X.H.; Li, J.; Wang, Y.; Weng, Y.X.; Wang, M. Controlling distribution of multi-walled carbon nanotube on surface area of Poly (ε-caprolactone) to form sandwiched structure for high-efficiency electromagnetic interference shielding. Compos. Part B Eng. 2020, 196, 108121. [Google Scholar] [CrossRef]
- Thomassin, J.-M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 2008, 18, 792–796. [Google Scholar] [CrossRef]
- Chen, J.; Liao, X.; Xiao, W.; Yang, J.; Jiang, Q.; Li, G. Facile and Green Method To Structure Ultralow−Threshold and Lightweight Polystyrene/MWCNT Composites with Segregated Conductive Networks for Efficient Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2019, 7, 9904–9915. [Google Scholar] [CrossRef]
- Yan, D.-X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.-G.; Wang, J.-H.; Li, Z.-M. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. [Google Scholar] [CrossRef]
- Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126–5134. [Google Scholar] [CrossRef]
- Duan, H.; He, P.; Zhu, H.; Yang, Y.; Zhao, G.; Liu, Y. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. Part B Eng. 2021, 212, 108690. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Wu, D. Design and Fabrication of Long-Carbon-Fiber-Reinforced Polyamide-6/Nickel Powder Composites for Electromagnetic Interference Shielding and High Mechanical Performance. Polym. Compos. 2016, 37, 2705–2718. [Google Scholar] [CrossRef]
- Hong, R.; Zhao, Z.; Leng, J.; Wu, J.; Zhang, J. Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network. Compos. Part B Eng. 2019, 176, 107214. [Google Scholar] [CrossRef]
- Yu, W.-C.; Wang, T.; Zhang, G.-Q.; Wang, Z.-G.; Yin, H.-M.; Yan, D.-X.; Xu, J.-Z.; Li, Z.-M. Largely enhanced mechanical property of segregated carbon nanotube/poly (vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol. 2018, 167, 260–267. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, C.; Li, R.; Hamidinejad, S.M.; Park, C.B. Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly (Vinylidene Fluoride)/Carbon Composite Films. ACS Appl. Mater. Interfaces 2017, 9, 20873–20884. [Google Scholar] [CrossRef]
- Ram, R.; Khastgir, D.; Rahaman, M. Physical properties of polyvinylidene fluoride/multi-walled carbon nanotube nanocomposites with special reference to electromagnetic interference shielding effectiveness. Adv. Polym. Technol. 2018, 37, 3287–3296. [Google Scholar] [CrossRef]
- Ao, D.Y.; Tang, Y.L.; Xu, X.F.; Xiang, X.; Yu, J.X.; Li, S.; Zu, X.T. Highly Conductive PDMS Composite Mechanically Enhanced with 3D-Graphene Network for High-Performance EMI Shielding Application. Nanomaterials 2020, 10, 768. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Gao, A.; Zhao, S.; Cui, J.; Zhang, G. Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 26723–26732. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Shen, X.; Wu, Y.; Wang, Z.; Kim, J.-K. Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding. Compos. Part A Appl. Sci. Manuf. 2016, 85, 199–206. [Google Scholar] [CrossRef]
- Mondal, S.; Ravindren, R.; Shin, B.; Kim, S.; Lee, H.; Ganguly, S.; Das, N.C.; Nah, C. Electrical conductivity and electromagnetic interference shielding effectiveness of nano-structured carbon assisted poly (methyl methacrylate) nanocomposites. Polym. Eng. Sci. 2020, 60, 2414–2427. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhang, G.C.; Tang, M.; Zhou, L.S.; Li, J.T.; Fan, X.; Shi, X.T.; Qin, J.B. Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 2018, 353, 381–393. [Google Scholar] [CrossRef]
- Pande, S.; Singh, B.P.; Mathur, R.B.; Dhami, T.L.; Saini, P.; Dhawan, S.K. Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures. Nanoscale Res. Lett. 2009, 4, 327–334. [Google Scholar] [CrossRef]
- Mondal, S.; Ganguly, S.; Das, P.; Khastgir, D.; Das, N.C. Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Compos. Part B Eng. 2017, 119, 41–56. [Google Scholar] [CrossRef]
- Sit, S.; Chakraborty, G.; Das, N.C. Superior EMI shielding effectiveness with enhanced electrical conductivity at low percolation threshold of flexible novel ethylene methyl acrylate/single-walled carbon nanotube nanocomposites. Polym. Eng. Sci. 2022, 62, 2047–2060. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, Y.; Ma, J.; Li, Q.; Li, J.; Shao, W.; Yan, P.; Huang, G.; Du, X. Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 2019, 45, 3313–3324. [Google Scholar] [CrossRef]
- Guan, G.; Yan, L.; Zhou, Y.; Xiang, J.; Gao, G.; Zhang, H.; Gai, Z.; Zhang, K. Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers. Carbon 2022, 197, 494–507. [Google Scholar] [CrossRef]
- Huang, X.; Dai, B.; Ren, Y.; Xu, J.; Zhu, P. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni−Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition. J. Nanomater. 2015, 2015, 320306. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, C.W.; Kim, B.-J. A study on synergetic EMI shielding behaviors of Ni−Co alloy-coated carbon fibers-reinforced composites. Synth. Met. 2017, 223, 212–217. [Google Scholar] [CrossRef]
- Wang, G.; Wang, L.; Mark, L.H.; Shaayegan, V.; Wang, G.; Li, H.; Zhao, G.; Park, C.B. Ultralow−Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Appl. Mater. Interfaces 2018, 10, 1195–1203. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Saadeh, W.H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Feng, L.-M.; Chen, Y.-F.; Shi, Y.-D.; Chen, X.-D.; Wang, M. Segregated polypropylene/cross-linked poly (ethylene−co−l−octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: Towards electromagnetic interference shielding and thermistors. Compos. Sci. Technol. 2018, 159, 152–161. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, Y.; Jang, M.G.; Han, C.; Kim, W.N. Comparative study of EMI shielding effectiveness for carbon fiber pultruded polypropylene/poly (lactic acid)/multiwall CNT composites prepared by injection molding versus screw extrusion. J. Appl. Polym. Sci. 2017, 134, 45222. [Google Scholar] [CrossRef]
- Chen, J.; Liao, X.; Li, S.; Wang, W.; Guo, F.; Li, G. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106059. [Google Scholar] [CrossRef]
- Zou, F.F.; Chen, J.; Liao, X.; Song, P.W.; Li, G.X. Efficient electrical conductivity and electromagnetic interference shielding performance of double percolated polymer composite foams by phase coarsening in supercritical CO2. Compos. Sci. Technol. 2021, 213, 108895. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, K.; Zhang, X.; Ding, X.; Zhang, Z.X.; Bao, C.; Guo, L.; Chen, L.; Tian, X.Y. 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos. Sci. Technol. 2016, 125, 22–29. [Google Scholar] [CrossRef]
- Li, Y.; Nie, C.; Song, D.; Liu, Y.; Jia, Y.; Zheng, H. Enhanced electrical and electromagnetic interference shielding performance of immiscible poly (vinylidene chloride)/poly (lactic acid)/multi-walled carbon nanotube composites via constructing filler-wrapped porous structure. Polym. Compos. 2023, 44, 3313–3324. [Google Scholar] [CrossRef]
- Zha, X.J.; Pu, J.H.; Ma, L.F.; Li, T.; Bao, R.Y.; Bai, L.; Liu, Z.Y.; Yang, M.B.; Yang, W. A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2018, 105, 118–125. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Li, H.-S.; Guo, B.-H.; Guo, Z.-X.; Yu, J. Facile Preparation of Electromagnetic Interference Shielding Materials Enabled by Constructing Interconnected Network of Multi-walled Carbon Nanotubes in a Miscible Polymeric Blend. Chin. J. Polym. Sci. 2020, 38, 593–598. [Google Scholar] [CrossRef]
- Jia, L.-C.; Yan, D.-X.; Cui, C.-H.; Ji, X.; Li, Z.-M. A Unique Double Percolated Polymer Composite for Highly Efficient Electromagnetic Interference Shielding. Macromol. Mater. Eng. 2016, 301, 1232–1241. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Bhawal, P.; Ali, S.M.N.; Das, N.C. Superior electromagnetic interference shielding effectiveness and low percolation threshold through the preferential distribution of carbon black in the highly flexible polymer blend composites. Polym. Compos. 2019, 40, 1404–1418. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Synergistic effect of double percolated co−supportive MWCNT-CB conductive network for high-performance EMI shielding application. Polym. Adv. Technol. 2019, 30, 1506–1517. [Google Scholar] [CrossRef]
- Ne, M.L.O.; Boujnah, M.; Benyoussef, A.; El Kenz, A. Electronic and Electrical Conductivity of AB and AA-Stacked Bilayer Graphene with Tunable Layer Separation. J. Supercond. Nov. Magn. 2017, 30, 1263–1267. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Radhakrishnan, P.; Ezhilselvi, V.; Kumar, A.A.; Chen, Z.; Surendran, K.P. Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites. Surf. Coat. Technol. 2016, 302, 389–397. [Google Scholar] [CrossRef]
- Guan, H.; Chung, D.D.L. Effect of the planar coil and linear arrangements of continuous carbon fiber tow on the electromagnetic interference shielding effectiveness, with comparison of carbon fibers with and without nickel coating. Carbon 2019, 152, 898–908. [Google Scholar] [CrossRef]
- Dou, R.; Shao, Y.; Li, S.L.; Yin, B.; Yang, M.B. Structuring tri-continuous structure multiphase composites with ultralow conductive percolation threshold and excellent electromagnetic shielding effectiveness using simple melt mixing. Polymer 2016, 83, 34–39. [Google Scholar] [CrossRef]
- Sadeghi, A.; Moeini, R.; Yeganeh, J.K. Highly Conductive PP/PET Polymer Blends With High Electromagnetic Interference Shielding Performances in the Presence of Thermally Reduced Graphene Nanosheets Prepared Through Melt Compounding. Polym. Compos. 2019, 40, E1461–E1469. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. Part B Eng. 2019, 164, 559–569. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Das, T.K.; Ganguly, S.; Paul, S.; Nath, K.; Katheria, A.; Ghosh, T.; Chowdhury, S.N.; Das, N.C. Carbon nanotubes and carbon nanofibers based co−continuous thermoplastic elastomeric blend composites for efficient microwave shielding and thermal management. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107118. [Google Scholar] [CrossRef]
- Lanticse, L.J.; Tanabe, Y.; Matsui, K.; Kaburagi, Y.; Suda, K.; Hoteida, M.; Endo, M.; Yasuda, E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon 2006, 44, 3078–3086. [Google Scholar] [CrossRef]
- Ameli, A.; Nofar, M.; Park, C.B.; Pötschke, P.; Rizvi, G. Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 2014, 71, 206–217. [Google Scholar] [CrossRef]
- Fu, L.; Li, K.; Qin, H.; Hou, J.J.; Zhang, X.L.; He, G.J.; Liu, B.C.; Ren, C.X.; Chen, J.B. Sandwich structured iPP/CNTs nanocomposite foams with high electromagnetic interference shielding performance. Compos. Sci. Technol. 2022, 220, 109297. [Google Scholar] [CrossRef]
- Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Zhang, Y.-G.; Jiang, Y.-Y.; Ma, M.-G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12, 4583–4593. [Google Scholar] [CrossRef] [PubMed]
- Van-Tam, N.; Quy-Dat, N.; Min, B.K.; Yi, Y.; Choi, C.-G. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications. Chem. Eng. J. 2022, 430, 133171. [Google Scholar] [CrossRef]
Polymers | The Type of Carbon-Based Fillers | Processing Methods | Filler Content | Electrical Percolation Threshold | Conductivity | EMI SE | |
---|---|---|---|---|---|---|---|
[73] | Polypropylene (PP) | MWCNT Average diameter: 9.5 nm length: 1.5 μm | Melt blending Hot pressed | 0.25–7.5 vol% | 0.4 vol% | 580 S/m | 94 dB |
[48] | PP | MWCNT Average diameter: 9.5 nm length: 1.5 μm | Melt blending Compression molding | ~0–11 vol% | 1.24 vol% | ~100 S/m | 28.6 dB |
[75] | PP | MWCNT Average diameter: 20–30 nm Average length: 0.5–2 μm Carbon Fiber (CF) Length: 6 mm | Melt blending Injection molding | 0.5 wt.% 0–20 wt.% 0–20 wt.% | 4.05 wt.% | 9.58 × 10−2 S/cm | 51.9 dB |
[76] | PP | CB Diameter: 30–45 nm CNT Length: 10–30 μm Diameter: 8 nm (1/1) | Compression molding Structural manipulation Solid-state ScCO2 foaming | 05 wt.% | 0.016 vol% | ~6.67 × 10−3 S/cm | 72.23 dB·cm3/g |
[77] | PP | Nickel-coated carbon fiber Diameter: 7 μm | Melt blending Injection molding | 10–30 wt.% | 101–102 S/cm | 48.4 dB | |
[78] | Copolymerization Polypropylene (co−PP) | CNT Average diameter: 9.5 nm Length: 1.5 μm | Melt blending Injection molding | 0–3.5 wt.% | 14.4 S/m | 32 dB | |
[56] | Polycarbonate (PC) | Long fiber nickel-coated carbon fiber Length: 12 mm | Pultrusion process Cube Blending | 20 wt.% | 100–110 dB | ||
[79] | Polyethylene (PE) | CB | Solution-mixture | 0–10 wt.% | 3.5 wt.% | ~10−2 S/cm | 56.1 dB |
[80] | PE | Segregated carbon nanotube (s−CNT) | Compression molding | 0–5 wt.% | 0.013 vol% | ~50 S/m | ~50 dB |
[81] | Chlorinated Polyethylene (CPE) | Carbon nanofiber Length: 30–100 μm diameter 70–200 nm Ketjen carbon black (K-CB) Particle size: 50–60 nm (1/1) | Solution blending | 0–15 wt.% | 4.8 wt.% | 0.022 S/cm | 37–39 dB |
[82] | Ultrahigh Molecular Weight Polyethylene (UHMWPE) | CNT Average diameter: 9.5 nm Length: 1.5 μm | Wet-mixing Hot compression | 0–10 wt.% | 0.096 wt.% | ~1 Ω·cm | 20 dB |
[83] | UHMWPE | CNT Average diameter: 9.5 nm Average length: 1.5 μm | Solid phase extrusion | 0–4 wt.% | 0.085 vol% | ~10 S/m | ~37 dB |
[84] | UHMWPE | Graphite platelets (GP) Lateral dimension: 20 μm CB Average particle size: 25 nm (1/1) | Hot compression | 0.1–15 wt.% | 0.24 vol% | 33.9 S/m | 40.2 dB |
[85] | UHMWPE | Carbon nanostructures (CNS) | Compression molding | 0–10 wt.% | 0.48 wt.% | ~1 S/cm | 60.7 dB |
[86] | UHMWPE | Graphene nanoplatelets (GNP) | 0–40 wt.% | 2–3 wt.% | 0.11 Ω·cm | ~75 dB | |
[87] | Polycaprolactone (PCL) | MWCNT Average diameter: 9.5 nm Length: 1.5 μm | Solution-mixture Compression molding | 0–0.15 wt.% | ~0.016 wt.% | ~2.49 × 10−2 S/cm | ~23.8 dB |
[48] | PCL | MWCNT Average diameter: 9.5 nm Length: 1.5 μm | Melt blending Compression molding | ~0–11 vol% | 0.33 vol% | ~100 S/m | 42 dB |
[88] | PCL | MWCNT Average diameter: 9.5 nm Length: 1.5 μm | Melt blending Compression molding layer by layer | 5–15 wt.% | 61.5 dB | ||
[89] | PCL | MWCNT Average outer diameter: 10 nm | Co−precipitation ScCO2 foaming | 0.049–0.249 vol% | 60–80 dB | ||
[90] | Polystyrene (PS) | MWCNT Mean diameter: 9.5 nm Mean length: 1.5 μm | High-speed mechanical mixing Supercritical carbon dioxide (scco2) foaming | 0–1.88 vol% | 0.07 vol% | 8.05 S/m | 23.2 dB |
[91] | PS | Graphene oxide (GO) Thickness: 1–2 nm Average particle size: 0.87 μm | Solution-mixture Solid-phase compression molding | 0–3.47 vol% | 0.09 vol% | 43.5 S/m | 45.1 dB |
[92] | PS | MWCNT | Melt blending Compression molding | 0–20 wt.% | ~4 wt.% | ~0.1 S/cm | ~60 dB |
[93] | Polyamide 6 (PA6) | Expanded graphite (EG) 0.15 vol% NiCl2·6H2O | Electroless plating Hot compression | 0–0.9 vol% | 0.2–0.3 vol% | 778 S/m | 77.3 dB |
[94] | PA6 | PAN-based carbon fiber Nickel powders | Melt blending Thermoplastic pultrusion | 0–14 vol% 0–10 wt.% | 5 vol% | 10−2–10−3 S/m | ~36 dB |
[95] | PA12 | Nano-carbon black (CB) | Selective laser sintering | 0–8 wt.% | 0.87 wt.% | ~10−1 S/m | |
[96] | Polyvinylidene Fluoride (PVDF) | CNT Average diameter: 9.5 nm Length: 1.5 μm | Solid-phase extrusion | 0–4 wt.% | 0.09 vol% | 74.5 S/m | 36.8 dB |
[97] | PVDF | CNT Graphene | Solution-mixture | 5 wt.% 10 wt.% | 27.58 dB | ||
[98] | PVDF | MWCNT Average diameter: 40–60 nm Length: 0.5–40 μm | Solution casting | 0–5 wt.% | 35 dB | ||
[32] | PVDF | GNP | ScCO2 foaming Solution-mixture | 4 wt.% | ~50 dB | ||
[99] | Polydimethylsiloxane (PDMS) | GN | Chemical vapor deposition | 1.2 wt. | 6100 S/m | 90 dB | |
[100] | PDMS | SWCNTs Diameter: ~2–4 nm, Length: ~30 μm | Sol–gel self-assembly method | 0.25–0.35 wt.% | 1.2 S/cm | 31 dB | |
[101] | PDMS | Graphene layers MWCNTs Diameters: 60–80 nm Length: ~20 μm | Chemical vapor deposition Thermal curing and Ni etching | 0.28–2.7 wt.% 0–5 wt.% | 31.5 S/cm | ~75 dB 833 dB·cm3/g | |
[102] | Poly (Methyl Methacrylate) (PMMA) | CB Surface area: 1400 m2/g | Hot compression Solution-mixture | 0–10 wt.% | 2.79 wt.% | 2.2 × 10−3 S/cm | 36.1 dB |
[103] | PMMA | GNP Thickness: 3–10 nm Average platelet diameter: 5–10 μm MWCNT Diameter: 30–50 nm Length: 10–20 μm | Solution-mixing ScCO2 foaming | 1.5–4 wt.% 3–8 wt.% | 36 dB | ||
[104] | PMMA | MWCNT Uniform diameter: 60–70 nm Length: 50–100 μm | Solvent casting Compression molding | 0–10 vol% | 40 dB | ||
[105] | Ethylene Methyl Acrylate (EMA) | Ketjen carbon black (K−CB) | Solvent evaporation Hot-pressing | 0–20 wt.% | 8.6 wt.% | ~10−2 S/cm | 33.9 dB |
[106] | EMA | SWCNT Mean diameter: 2 nm Length: 5 μm | Solution mixing Compression molding | 0–15 wt.% | 1.96 wt.% | ~10−4 S/cm | 44.85 dB |
[107] | Paraffin wax (PW) | Nickel-coated carbon nanofiber Average diameter circa: 140 ± 20 nm | Solution mixing Electrospinning calcine | 10 wt.% | reflection loss 44.9 dB | ||
[108] | PW | FeNi@ carbon nanofiber Diameter circa: 170 nm | Solution mixing Electrospinning | 5 wt.% | reflection loss 31.3 dB | ||
[109] | PW | Ni−Co−coated carbon fiber | Solution mixing Compression molding | 30 wt.% | 1313 S/m | 41.2 dB | |
[110] | Epoxy resin | Ni−Co alloy−coated carbon fiber Diameter: ~7 μm | Compression molding | 75–80 dB | |||
[57] | Silicone rubber | Nickel filaments Diameter: 0.4 μm Length was > 100 μm | Compression molding | 3–19 vol% | 0.02 Ω·cm | 90.5 ± 5.5 dB | |
[59] | PES | Nickel filaments Diameter: 0.404 ± 0.022 μm | Compression molding | 3–19 vol% | 10−2~10−3 Ω·cm | 91.7 ± 6.6 dB | |
[111] | Polylactic Acid (PLA) | MWCNT Diameters: 10–15 nm Lengths: 30–50 μm | Melt blending scCO2 foaming Sinter | 0–0.0054 vol% | 0.00094 vol% | ~10 S/cm | 50 dB |
[112] | Acrylonitrile-butadiene−styrene (ABS) | MWCNT Average diameter: 9.5 nm Length: 1.5 μm | Solution processing Cast | 0.5–15 wt.% | 0.5 wt.% | 1 Ω·cm | 50 dB |
[113] | Isotactic Polypropylene (iPP) /Poly (ethylene−co−1−octene) (POE) (25/75) | MWCNT Average diameter: 9.5 nm Length: 1.5 mm | Melt blending | ~0–3 vol% | 0.24 vol% | ~0.1 S/cm | ~25 dB |
[114] | PP/PLA (70/30) | Nickel-coated CF Diameter: 7.0–7.8 μm CNT Diameter: 9–12 nm | Melt blending | 0–20 Phr 5 Phr | ~101 S/m | 50.5 dB | |
[115] | PS/PMMA (1/1) | MWCNT Mean diameter: 9.5 nm Mean length: 1.5 μm | Melt blending Compression molding Supercritical carbon dioxide (scCO2) foaming | 0–7 wt.% | 0.14 vol% | 1.64 S/m | 23.08 dB |
[116] | PS/PMMA (1/1) | MWCNT Mean diameter: 9.5 nm Mean length: 1.5 μm | Melt blending ScCO2 annealing | 0–4.58 vol% | 0.08 vol% | ~10−2 S/m | 43.73 dB |
[117] | PVDF/PS (1/1) | MWCNT Diameter: 8–15 nm Length: 30–39 μm | Melt blending Compression molding | 0–15 wt.% | ~5 wt.% | ~0.1 S/cm | 32.99 dB |
[118] | PVDF/PLA (1/1) | MWCNT Average diameter: 20–30 nm Average length: 10–30 μm | Melt blending Solution-flocculation method Pressed | 0–7 wt.% | 0.25 wt.% | ~0.01 S/cm | 60 dB |
[64] | PCL/PS | MWCNT Mean diameter: 9.5 nm Mean length: 1.5 μm | Melt blending Compression molding ScCO2 foaming | 0–5 wt.% | 0.16 wt.% | 101–102 S/m | 37.4 dB |
[119] | PVDF/ethylene−α−octene block copolymer (OBC) (78/22) | MWCNT Average diameter: 10–20 nm Average length: 0.2–2 μm | Melt blending Compression molding | 0–9 vol% | 2.4 vol% | ~0.1 S/cm | ~34 dB |
[120] | Poly(Phenylene Oxide) PPO/PS (35/65) | CNTs Average diameter: 10−15 nm Average length: 10 μm | Melt-compounding | 0–10 wt.% | 33.42 S/m | 23–25 dB | |
[121] | Ethylene Vinyl Acetate (EVA)/ UHMWPE (1/4) | CNT Average diameter: 9.5 nm, length: 1.5 μm | Solution-mixture Hot compression | 0–7 wt.% | 0.014 vol% | ~102 S/m | 57.4 dB |
[122] | EMA/Ethylene Octene Copolymer (EOC) (1/1) | Vulcan XC 72 conductive carbon black (VCB) | Solution mixing | 0–30 wt.% | ~10 wt.% | ~10−2 S/cm | 31.4 dB |
[123] | EMA/EOC (1/1) | MWCNT/VCB (1/1) | Solution mixing | 20 wt.% | ~10−1 S/cm | 37.4 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, X.; Zhang, Y.; Shen, J.; Liang, R.; Wang, J.; Jia, L.; Yang, X.; Yu, W.; Zhang, Z. A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding. Polymers 2024, 16, 2539. https://doi.org/10.3390/polym16172539
Nan X, Zhang Y, Shen J, Liang R, Wang J, Jia L, Yang X, Yu W, Zhang Z. A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding. Polymers. 2024; 16(17):2539. https://doi.org/10.3390/polym16172539
Chicago/Turabian StyleNan, Xiaotian, Yi Zhang, Jiahao Shen, Ruimiao Liang, Jiayi Wang, Lan Jia, Xiaojiong Yang, Wenwen Yu, and Zhiyi Zhang. 2024. "A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding" Polymers 16, no. 17: 2539. https://doi.org/10.3390/polym16172539
APA StyleNan, X., Zhang, Y., Shen, J., Liang, R., Wang, J., Jia, L., Yang, X., Yu, W., & Zhang, Z. (2024). A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding. Polymers, 16(17), 2539. https://doi.org/10.3390/polym16172539