Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials
Abstract
:1. Introduction
1.1. Brief Introduction to Polymers and Self-Assembly
1.2. Introduction to Polymer Self-Assembly
2. Self-Assembly and Application of Natural Polymers
2.1. Carbohydrate Self-Assembly and Application
2.1.1. Application of Carbohydrate Self-Assembly in the Field of Biomedicine
Identification Function
Anticancer Treatment and Immunity
Tissue Engineering
Antimicrobial Agents
2.1.2. The Application of Carbohydrate Self-Assembly in the Field of Materials
2.2. Self-Assembly and Applications of Proteins
2.2.1. Application of Protein Self-Assembly in the Biomedical Field
Cell and Tissue Engineering
Design and Preparation of Drug Delivery Systems
2.2.2. Applications of Protein Self-Assembly in the Field of Materials
3. Self-Assembly and Applications of Non-Natural Polymers
3.1. Applications in the Field of Biomedicine
3.2. Applications in the Field of Materials
3.2.1. Self-Assembly and Application of Amorphous Structured Materials
3.2.2. Self-Assembly and Application of Forming Ordered Crystal Structures
4. Discussion, Conclusions, and Future Directions
4.1. Summary of Research Progress on Polymer Self-Assembled Materials
4.2. The Advantages of Self-Assembled Materials
4.3. Future Development
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Lutz, J.F.; Börner, H.G. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 2008, 33, 1–39. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Su, L.; Feng, Y.; Wei, K.; Xu, X.; Liu, R.; Chen, G. Carbohydrate-based macromolecular biomaterials. Chem. Rev. 2021, 121, 10950–11029. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hudalla, G.A. Using Self-Assembling peptides to integrate biomolecules into functional supramolecular biomaterials. Molecules 2019, 24, 1450. [Google Scholar] [CrossRef]
- Salgado, E.N.; Radford, R.J.; Tezcan, F.A. Metal-directed protein self-assembly. Acc. Chem. Res. 2010, 43, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef]
- Ariga, K.; Hill, J.P.; Lee, M.V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater. 2008, 9, 014109. [Google Scholar] [CrossRef]
- Tibbits, S. Design to self-assembly. Archit. Des. 2012, 82, 68–73. [Google Scholar] [CrossRef]
- Yagai, S.; Karatsu, T.; Kitamura, A. Photocontrollable self-assembly. Chem. A Eur. J. 2005, 11, 4054–4063. [Google Scholar] [CrossRef]
- Grzybowski, B.A.; Wilmer, C.E.; Kim, J.; Browne, K.P.; Bishop, K.J.M. Self-assembly: From crystals to cells. Soft Matter 2009, 5, 1110–1128. [Google Scholar] [CrossRef]
- Chang, A.B.; Lin, T.-P.; Thompson, N.B.; Luo, S.-X.L.; Liberman-Martin, A.L.; Chen, H.-Y.; Lee, B.; Grubbs, R.H. Design, synthesis, and self-assembly of polymers with tailored graft distributions. J. Am. Chem. Soc. 2017, 139, 17683–17693. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Dove, A.P.; O’Reilly, R.K. Self-assembly of cyclic polymers. Polym. Chem. 2015, 6, 2998–3008. [Google Scholar] [CrossRef]
- Penfold, N.J.W.; Yeow, J.; Boyer, C.; Armes, S.P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 2019, 8, 1029–1054. [Google Scholar] [CrossRef] [PubMed]
- Ikkala, O.; Brinke, G.T. Hierarchical self-assembly in polymeric complexes: Towards functional materials. Chem. Commun. 2004, 19, 2131–2137. [Google Scholar] [CrossRef] [PubMed]
- Ikkala, O.; Brinke, G.T. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409. [Google Scholar] [CrossRef]
- Mai, Y.; An, Z.; Liu, S. Self-Assembled Materials and Applications. Macromol. Rapid Commun. 2022, 43, e2200481. [Google Scholar] [CrossRef]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. WIREs Nanomed. Nanobiotechnol. 2013, 5, 582–612. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Prasad, S.; Mishra, P.K.; Sharma, S.K.; Parshad, B. Self assembled of carbohydrate based small samples and their applications in pathogenic inhibition and drug delivery: A review. Mater. Adv. 2021, 2, 3459–3473. [Google Scholar] [CrossRef]
- Li, L.; Chen, G. Precise Assembly of proteins and carbohydrates for next-generation biomaterials. J. Am. Chem. Soc. 2022, 144, 16232–16251. [Google Scholar] [CrossRef]
- Wong, S.; Zhao, J.; Cao, C.; Wong, C.K.; Kuchel, R.P.; De Luca, S.; Hook, J.M.; Garvey, C.J.; Smith, S.; Ho, J.; et al. Just add sugar for carbohydrate induced self-assembly of curcumin. Nat. Commun. 2019, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.-J.; Baker, A.N.; Walker, M.; Gibson, M.I. Polymer-Stabilized Sialylated Nanoparticles: Synthesis, Optimization, and Differential Binding to Influenza Hemagglutinins. Biomacromolecules 2020, 21, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.P.V.; Santos, L.C.B.; Brito, C.R.N.; Valencia, E.; Junqueira, C.; Filho, A.A.P.; Sant’anna, M.R.V.; Gontijo, N.F.; Bartholomeu, D.C.; Fujiwara, R.T.; et al. Virus-like Particle Display of the α-Gal Carbohydrate for Vaccination against Leishmania Infection. ACS Cent. Sci. 2017, 3, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Kassem, S.; Reis, R.L.; Ulijn, R.V.; Pires, R.A.; Pashkuleva, I. Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. Chem 2021, 7, 2943–2964. [Google Scholar] [CrossRef]
- Wang, B.; Liu, S.; Li, H.; Dong, W.; Liu, H.; Zhang, J.; Tian, C.; Dong, S. Facile Preparation of Carbohydrate-Containing Adjustments Based on Self Assembling Glycopeptide Conjugates. Angew. Chem. Int. Ed. 2024, 63, e202309140. [Google Scholar] [CrossRef] [PubMed]
- Banger, A.; Pasch, P.; Blawitzki, L.C.; Weber, S.; Otten, M.; Monzel, C.; Schmidt, S.; Voskuhl, J.; Hartmann, L. Detection of Lectin Clustering in Self-Assembled, Glycan-Functionalized Amphiphiles by Aggregation-Induced Emission Luminophores. Macromol. Chem. Phys. 2023, 224, 2200314. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, J.; Xie, R.; Yu, D.; Wei, H.; Wang, Y.; Hua, Z.; Qi, X.; Huang, B.; Yang, G. Adenosine Triphosphate-Responsive Glyconanorods through Self-Assembly of β-Cyclodextrin-Based Glycoconjugates for Targeted and Effective Bacterial Sensing and Killing. Biomacromolecules 2023, 24, 1003–1013. [Google Scholar] [CrossRef]
- Mantuano, N.R.; Natoli, M.; Zippelius, A.; Läubli, H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J. Immunother. Cancer 2020, 8, e001222. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wang, Y.; Ye, X. Carbohydrate-based vaccines for oncotherapy. Med. Res. Rev. 2018, 38, 1003–1026. [Google Scholar] [CrossRef]
- Khatun, F.; Toth, I.; Stephenson, R.J. Immunology of carbohydrate-based vaccines. Adv. Drug Deliv. Rev. 2020, 165-166, 117–126. [Google Scholar] [CrossRef]
- Brito, A.; Pereira, P.M.R.; da Costa, D.S.; Reis, R.L.; Ulijn, R.V.; Lewis, J.S.; Pires, R.A.; Pashkuleva, I. Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chem. Sci. 2020, 11, 3737–3744. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, L.; Zhang, Y.; Dove, A.P.; O’reilly, R.K.; Chen, G. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 2016, 5, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jiang, X.; Hunziker, P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016, 8, 16091–16156. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, S.; Yu, Z.; Heng, X.; Zhou, N.; Chen, G. Well-Defined Oligo(azobenzene-graft-mannose): Photostimuli Supramolecular Self-Assembly and Immune Effect Regulation. ACS Macro Lett. 2024, 13, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; An, C.; Li, H.; Hu, F.; Dong, S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. Adv. Sci. 2020, 7, 2001264. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, T.; Chrungoo, S.; Verma, D. Self-assembled chitosan/gelatin nanofibrous aggregates incorporated thermosensitive nanocomposite bioink for bone tissue engineering. Carbohydr. Polym. 2024, 324, 121544. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; van Dongen, K.; Kennedy, C.; Schotman, M.J.; Román, P.P.M.S.; Storm, C.; Dankers, P.Y.; Sijbesma, R.P. Hepatic Spheroid Formation on Carbohydrate-Functionalized Supramolecular Hydrogels. Biomacromolecules 2023, 24, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Bandlow, V.; Liese, S.; Lauster, D.; Ludwig, K.; Netz, R.R.; Herrmann, A.; Seitz, O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. Am. Chem. Soc. 2017, 139, 16389–16397. [Google Scholar] [CrossRef] [PubMed]
- Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection. J. Am. Chem. Soc. 2017, 139, 6018–6025. [Google Scholar] [CrossRef]
- Doores, K.J.; Fulton, Z.; Hong, V.; Patel, M.K.; Scanlan, C.N.; Wormald, M.R.; Finn, M.G.; Burton, D.R.; Wilson, I.A.; Davis, B.G. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc. Natl. Acad. Sci. USA 2010, 107, 17107–17112. [Google Scholar] [CrossRef]
- Astronomo, R.D.; Kaltgrad, E.; Udit, A.K.; Wang, S.-K.; Doores, K.J.; Huang, C.-Y.; Pantophlet, R.; Paulson, J.C.; Wong, C.-H.; Finn, M.; et al. Defining Criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem. Biol. 2010, 17, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Viana, R.; Sánchez-Navarro, M.; Luczkowiak, J.; Koeppe, J.R.; Delgado, R.; Rojo, J.; Davis, B.G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 2012, 3, 1303. [Google Scholar] [CrossRef] [PubMed]
- Lauster, D.; Klenk, S.; Ludwig, K.; Nojoumi, S.; Behren, S.; Adam, L.; Stadtmüller, M.; Saenger, S.; Zimmler, S.; Hönzke, K.; et al. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat. Nanotechnol. 2020, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, L.; Du, Q.; Gou, L.; Zhang, L.; Chai, Y.; Zhang, R.; Shi, T.; Chen, G. Polymorphism of Kdo-Based Glycolipids: The Elaborately Determined Stable and Dynamic Bicelles. CCS Chem. 2022, 4, 2228–2238. [Google Scholar] [CrossRef]
- Isono, T.; Nakahira, S.; Hsieh, H.-C.; Katsuhara, S.; Mamiya, H.; Yamamoto, T.; Chen, W.-C.; Borsali, R.; Tajima, K.; Satoh, T. Carbohydrates as hard segments for sustainable elastomers: Carbohydrates direct the self-assembly and mechanical properties of fully bio-based block copolymers. Macromolecules 2020, 53, 5408–5417. [Google Scholar] [CrossRef]
- Shi, J.; Sun, X.; Zhang, Y.; Niu, S.; Wang, Z.; Wu, Z.; An, M.; Chen, L.; Li, J. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting. Carbohydr. Polym. 2024, 327, 121656. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, X.; Ma, T.; Wang, S.; Yang, S.; Zhu, W.; Song, J.; Han, J.; Jin, Y.; Guo, J. High-substituted hydroxypropyl cellulose prepared by homogeneous method and its clouding and self-assembly behaviors. Carbohydr. Polym. 2024, 330, 121822. [Google Scholar] [CrossRef]
- Ye, J.; Wei, P.; Qi, Y.; Xie, Y.; Yalikun, N.; Wang, Q.; Huang, X. The cellulose nanocrystal jammed interfaces induced by CO2-assisted self-assembly for enhancing oil recovery. Carbohydr. Polym. 2024, 331, 121853. [Google Scholar] [CrossRef]
- Yao, Y.; Meng, X.; Li, C.; Bernaerts, K.V.; Zhang, K. Tuning the Chiral Structures from Self-Assembled Carbohydrate Derivatives. Small 2023, 19, e2208286. [Google Scholar] [CrossRef]
- Lim, Y.G.J.; Poh, K.C.W.; Loo, S.C.J. Hybrid Janus microparticles achieving selective encapsulation for theranostic applications via a facile solvent emulsion method. Macromol. Rapid Commun. 2019, 40, 1800801. [Google Scholar] [CrossRef]
- Jiang, W.; Pacella, M.S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R.M.; Gray, J.J.; McKee, M.D. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 2017, 8, 15066. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Tang, Q.; Rosenfeldt, S.; Krüsmann, M.; Karg, M.; Zhang, K. Tuning Sugar-Based Chiral and Flower-like Microparticles. Small 2021, 17, 2102938. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dong, Y.; Hu, X.; Liu, A. Synthesis and liquid crystallinity of dendronized carbohydrate liquid crystal. Carbohydr. Res. 2012, 347, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Qi, H.; Dong, R.; Shivhare, R.; Addicoat, M.; Zhang, T.; Sahabudeen, H.; Heine, T.; Mannsfeld, S.; Kaiser, U.; et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 2019, 11, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Wang, K.; Liu, W.; Tang, W.; Yong, Q. Tuning the cellulose nanocrystal alignments for supramolecular assembly of chiral nematic films with highly efficient UVB shielding capability. J. Mater. Chem. C 2020, 8, 8493–8501. [Google Scholar] [CrossRef]
- Wang, K.R.; An, H.W.; Wu, L.; Zhang, J.C.; Li, X.L. Chiral self-assembly of lactose functionalized perylene bisimides as multivalent glycoclusters. Chem. Commun. 2012, 48, 5644–5646. [Google Scholar] [CrossRef] [PubMed]
- Djalali, S.; Yadav, N.; Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater. 2024, 9, 190–201. [Google Scholar] [CrossRef]
- Solomonov, A.; Kozell, A.; Shimanovich, U. Designing Multifunctional Biomaterials via Protein Self-Assembly. Angew. Chem. Int. Ed. 2024, 63, e202318365. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.J.; Charbonneau, P.; Zaccarelli, E.; Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 2016, 22, 73–79. [Google Scholar] [CrossRef]
- Mason, T.O.; Shimanovich, U. Fibrous protein self-assembly in biomimetic materials. Adv. Mater. 2018, 30, e1706462. [Google Scholar] [CrossRef]
- Chen, J.; Zou, X. Self-assemble peptide biomaterials and their biomedical applications. Bioact. Mater. 2019, 4, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Adamcik, J.; Mezzenga, R. Amyloid polymorphism in the protein folding and aggregation energy landscape. Angew. Chem. Int. Ed. 2018, 57, 8370–8382. [Google Scholar] [CrossRef] [PubMed]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In vivo aspects of protein folding and quality control. Science 2016, 353, aac4354. [Google Scholar] [CrossRef]
- Buell, A.K. Stability matters, too-the thermodynamics of amyloid fibril formation. Chem. Sci. 2022, 13, 10177–10192. [Google Scholar] [CrossRef]
- De Simone, A.; Kitchen, C.; Kwan, A.H.; Sunde, M.; Dobson, C.M.; Frenkel, D. Intrinsic disorder modulates protein self-assembly and aggregation. Proc. Natl. Acad. Sci. USA 2012, 109, 6951–6956. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Lv, C.; Wang, C.; Zhao, G. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnol. Adv. 2021, 52, 107835. [Google Scholar] [CrossRef] [PubMed]
- Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020, 5, 686–705. [Google Scholar] [CrossRef]
- Shen, Y.; Levin, A.; Kamada, A.; Toprakcioglu, Z.; Rodriguez-Garcia, M.; Xu, Y.; Knowles, T.P. rom protein building blocks to functional materials. ACS Nano 2021, 15, 5819–5837. [Google Scholar] [CrossRef]
- Perrone, G.S.; Leisk, G.G.; Lo, T.J.; Moreau, J.E.; Haas, D.S.; Papenburg, B.J.; Golden, E.B.; Partlow, B.P.; Fox, S.E.; Ibrahim, A.M.S.; et al. The use of silk-based devices for fracture fixation. Nat. Commun. 2014, 5, 3385. [Google Scholar] [CrossRef]
- Blake, S.; Kim, N.Y.; Kong, N.; Ouyang, J.; Tao, W. Silk’s cancer applications as a biodegradable material. Mater. Today Sustain. 2021, 13, 100069. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Vu, H.V.; Hanna, P.; Lechtig, A.; Qiu, Y.; Mu, X.; Ling, S.; Nazarian, A.; Lin, S.J.; et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 2020, 19, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Kiritani, S.; Kaneko, J.; Ito, D.; Morito, M.; Ishizawa, T.; Akamatsu, N.; Tanaka, M.; Iida, T.; Tanaka, T.; Tanaka, R.; et al. Silk fiber optic vascular grade: A promising tissue-engineered scaffold material for autonomous venous system replacement. Sci. Rep. 2020, 10, 21041. [Google Scholar] [CrossRef] [PubMed]
- Belluati, A.; Jimaja, S.; Chadwick, R.J.; Glynn, C.; Chami, M.; Happel, D.; Guo, C.; Kolmar, H.; Bruns, N. Artificial cell synthesis using biocatalytic polymerization-induced self-assembly. Nat. Chem. 2023, 16, 564–574. [Google Scholar] [CrossRef]
- Mizusawa, K.; Takaoka, Y.; Hamachi, I. Specific cell surface protein imaging by extended self-assembling fluorescent turn-on nanoprobes. J. Am. Chem. Soc. 2012, 134, 13386–13395. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, J.; Gòdia, F.; Cervera, L. Production of virus-like particles for vaccines. New Biotechnol. 2017, 39, 174–180. [Google Scholar] [CrossRef]
- Biesova, Z.; Miller, M.A.; Schneerson, R.; Shiloach, J.; Green, K.Y.; Robbins, J.B.; Keith, J.M. Preparation, characterization, and immunogenicity in mice of a recombinant influenza H5 hemagglutinin vaccine against the avian H5N1 A/Vietnam/1203/2004 influenza virus. Vaccine 2009, 27, 6234–6238. [Google Scholar] [CrossRef]
- Deng, L.; Wang, B.-Z. A Perspective on Nanoparticle Universal Influenza Vaccines. ACS Infect. Dis. 2018, 4, 1656–1665. [Google Scholar] [CrossRef]
- Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge, E.; Benhaim, M.; Ravichandran, R.; Carter, L.; et al. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 2019, 176, 1420–1431.e17. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Speiser, D.E.; Knuth, A.; Bachmann, M.F. Virus-like particles for vaccination against cancer. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1579. [Google Scholar] [CrossRef]
- Stevens, C.A.; Kaur, K.; Klok, H.A. Self-assembly of protein-polymer conjugates for drug delivery. Adv. Drug Deliv. Rev. 2021, 174, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Miralles, N.; Rodríguez-Carmona, E.; Corchero, J.L.; García-Fruitós, E.; Vázquez, E.; Villaverde, A. Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Crit. Rev. Biotechnol. 2015, 35, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Champion, J.A. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv. Drug Deliv. Rev. 2022, 189, 114462. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Objects 2019, 20, 100397. [Google Scholar] [CrossRef]
- Xia, X.X.; Wang, M.; Lin, Y.; Xu, Q.; Kaplan, D.L. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules 2014, 15, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Yu, A.; Lin, D.; Bao, Z.; Wang, Y.; Li, X. Bioinspired self-assembly supramolecular hydrogel for ocular drug delivery. Chin. Chem. Lett. 2021, 32, 3936–3939. [Google Scholar] [CrossRef]
- Berger, S.; Lowe, P.; Tesar, M. Fusion Protein Technologies for Biopharmaceuticals: Applications and Challenges. mAbs 2015, 7, 456–460. [Google Scholar] [CrossRef]
- Bialasek, M.; Kubiak, M.; Górczak, M.; Braniewska, A.; Kucharzewska-Siembieda, P.; Król, M.; Taciak, B. Exploiting iron-binding proteins for drug delivery. J. Physiol. Pharmacol. 2019, 70, 675–685. [Google Scholar]
- Wang, Q.; Zhang, C.; Liu, L.; Li, Z.; Guo, F.; Li, X.; Luo, J.; Zhao, D.; Liu, Y.; Su, Z. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency. J. Biotechnol. 2017, 254, 34–42. [Google Scholar] [CrossRef]
- Pontillo, N.; Pane, F.; Messori, L.; Amoresano, A.; Merlino, A. Cisplatin encapsulation within a ferritin nanocage: A high-resolution crystallographic study. Chem. Commun. 2016, 52, 4136–4139. [Google Scholar] [CrossRef]
- Jiang, B.; Yan, L.; Zhang, J.; Zhou, M.; Shi, G.; Tian, X.; Fan, K.; Hao, C.; Yan, X. Biomineralization synthesis of the cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2019, 11, 9747–9755. [Google Scholar] [CrossRef] [PubMed]
- Varma, L.T.; Singh, N.; Gorain, B.; Choudhury, H.; Tambuwala, M.M.; Kesharwani, P.; Shukla, R. Recent advances in self-assembled nanoparticles for drug delivery. Curr. Drug Deliv. 2020, 17, 279–291. [Google Scholar] [CrossRef] [PubMed]
- An, H.W.; Mamuti, M.; Wang, X.; Yao, H.; Wang, M.D.; Zhao, L.; Li, L.L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration 2021, 1, 20210153. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale self-assembly for therapeutic delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, R.; Shi, H.; Xu, J.; Wang, T.; Liu, J. Protein assembly: Controllable design strategies and applications in biology. Aggregate 2023, 4, e317. [Google Scholar] [CrossRef]
- Yang, G.; Ding, H.M.; Kochovski, Z.; Hu, R.; Lu, Y.; Ma, Y.Q.; Chen, G.; Jiang, M. Highly Ordered Self-Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assembly-Inducing Ligands. Angew. Chem. Int. Ed. 2017, 56, 10691–10695. [Google Scholar] [CrossRef] [PubMed]
- Duraj-Thatte, A.M.; Manjula-Basavanna, A.; Rutledge, J.; Xia, J.; Hassan, S.; Sourlis, A.; Rubio, A.G.; Lesha, A.; Zenkl, M.; Kan, A.; et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat. Commun. 2021, 12, 6600. [Google Scholar] [CrossRef]
- Peydayesh, M.; Kistler, S.; Zhou, J.; Lutz-Bueno, V.; Victorelli, F.D.; Meneguin, A.B.; Spósito, L.; Bauab, T.M.; Chorilli, M.; Mezzenga, R. Amyloid-polysaccharide interfacial coacervates as therapeutic materials. Nat. Commun. 2023, 14, 1848. [Google Scholar] [CrossRef]
- Shapiro, D.M.; Mandava, G.; Yalcin, S.E.; Arranz-Gibert, P.; Dahl, P.J.; Shipps, C.; Gu, Y.; Srikanth, V.; Salazar-Morales, A.I.; O’brien, J.P.; et al. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat. Commun. 2022, 13, 829. [Google Scholar] [CrossRef]
- Fan, L.; Li, J.-L.; Cai, Z.; Wang, X. Bioactive hierarchical silk fibers created by bioinspired self-assembly. Nat. Commun. 2021, 12, 2375. [Google Scholar] [CrossRef]
- Shen, H.; Lynch, E.M.; Akkineni, S.; Watson, J.L.; Decarreau, J.; Bethel, N.P.; Benna, I.; Sheffler, W.; Farrell, D.; DiMaio, F.; et al. De novo design of pH-responsive self-assembling helical protein filaments. Nat. Nanotechnol. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qian, X.; Mohanram, H.; Han, X.; Qi, H.; Zou, G.; Yuan, F.; Miserez, A.; Liu, T.; Yang, Q.; et al. Self-assembly of peptide nanocapsules by a solvent concentration gradient. Nat. Nanotechnol. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sendker, F.L.; Lo, Y.K.; Heimerl, T.; Bohn, S.; Persson, L.J.; Mais, C.-N.; Sadowska, W.; Paczia, N.; Nußbaum, E.; Olmos, M.d.C.S.; et al. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024, 628, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Hu, J.; Yin, Y.; Liu, P.; Cai, K.; Ji, W. Self-Assembling Peptide-Based Functional Biomaterials. ChemBioChem 2023, 24, e202200582. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cebe, P.; Weiss, A.S.; Omenetto, F.; Kaplan, D.L. Protein-based composite materials. Mater. Today 2012, 15, 208–215. [Google Scholar] [CrossRef]
- de la Rica, R.; Matsui, H. Applications of peptide and protein-based materials in bionanotechnology. Chem. Soc. Rev. 2010, 39, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wang, X.; An, B.; Zhang, C.; Gui, X.; Li, K.; Li, Y.; Ge, P.; Zhang, J.; Liu, C.; et al. Exploiting mammalian low complexity domains for liquid-liquid phase separation-driven under water adhesive coatings. Sci. Adv. 2019, 5, eaax3155. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pu, J.; An, B.; Li, Y.; Shang, Y.; Ning, Z.; Liu, Y.; Ba, F.; Zhang, J.; Zhong, C. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control. Adv. Mater. 2018, 30, e1705968. [Google Scholar] [CrossRef] [PubMed]
- Quijano-Rubio, A.; Yeh, H.-W.; Park, J.; Lee, H.; Langan, R.A.; Boyken, S.E.; Lajoie, M.J.; Cao, L.; Chow, C.M.; Miranda, M.C.; et al. De novo design of modular and tunable protein biosensors. Nature 2021, 591, 482–487. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; An, Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew. Chem. 2024, 136, e202315849. [Google Scholar] [CrossRef]
- György, C.; Armes, S.P. Recent Advances in Polymerization-Induced Self-Assembly (PISA) Syntheses in Non-Polar Media. Angew. Chem. Int. Ed. 2023, 62, e202308372. [Google Scholar] [CrossRef]
- Lang, C.; Lloyd, E.C.; Matuszewski, K.E.; Xu, Y.; Ganesan, V.; Huang, R.; Kumar, M.; Hickey, R.J. Nanostructured block copolymer muscles. Nat. Nanotechnol. 2022, 17, 752–758. [Google Scholar] [CrossRef]
- Aliabadi, A.; Vakili-Azghandi, M.; Abnous, K.; Taghdisi, S.M.; Babaei, M.; Ramezani, M.; Alibolandi, M. Amphiphilic polylactic acid-b-poly(N-(3-aminopropyl) methacrylamide) copolymers: Self-assembly to polymeric micelles for gene delivery. J. Drug Deliv. Sci. Technol. 2024, 91, 105236. [Google Scholar] [CrossRef]
- Yao, S.; Yang, J.; Yang, J. ROPISA of salicylic acid O-carboxyanhydride: Fast polymerization followed by in situ kinetics-driven self-assembly. Polym. Chem. 2023, 14, 3493–3500. [Google Scholar] [CrossRef]
- Li, Y.X.; Xu, L.; Kang, S.M.; Zhou, L.; Liu, N.; Wu, Z.Q. Helicity-and Molecular-Weight-Driven Self-Sorting and Assembly of Helical Polymers towards Two-Dimensional Smectic Architectures and Selectively Adhesive Gels. Angew. Chem. Int. Ed. 2021, 60, 7174–7179. [Google Scholar] [CrossRef]
- Zhao, Z.; Lei, S.; Zeng, M.; Huo, M. Recent progress in polymerization-induced self-assembly: From the perspective of driving forces. Aggregate 2024, 5, e418. [Google Scholar] [CrossRef]
- Shen, D.; Shi, B.; Zhou, P.; Li, D.; Wang, G. Temperature-dependent ring-opening polymerization-induced self-assembly using crystallizable polylactones as core-forming blocks. Macromolecules 2023, 56, 4814–4822. [Google Scholar] [CrossRef]
- Gao, Y.; Deng, H.; Li, W.; Qiu, F.; Shi, A.C. Formation of Nonclassical Ordered Phases of A B-Type Multiarm Block Copolymers. Phys. Rev. Lett. 2016, 116, 068304. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Huang, J.; van der Tol, J.J.B.; Su, L.; Wang, Y.; Dey, S.; Zijlstra, P.; Fytas, G.; Vantomme, G.; Dankers, P.Y.W.; et al. Supramolecular polymers form tactoids through liquid–liquid phase separation. Nature 2024, 626, 1011–1018. [Google Scholar] [CrossRef]
- Shi, B.; Hu, W.; Li, S.; Xia, Z.; Lü, C. Perovskite photoinitiated RAFT-mediated polymerization-induced self-assembly for organic–inorganic hybrid nanomaterials. Inorg. Chem. Front. 2024, 11, 2471–2478. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Zhao, S.; Yan, Y.; Li, X.; Zhang, X. Nonadditive Effective Interactions and Entropy-Driven Non-Close-Packed Self-Assembly Cluster of Nanoparticle in Ordered Block Copolymer Structure. Macromolecules 2024, 57, 1478–1488. [Google Scholar] [CrossRef]
- Shao, X.; Li, D.; Guo, S.; Yan, J.; Qian, Y.; Wang, G. Preparation of diblock copolymer nano-assemblies by ultrasonics assisted ethanol-phase polymerization-induced self-assembly. Ultrason. Sonochem. 2024, 105, 106855. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xia, Z.; Hu, W.; Liu, B.; Lü, C. Phenanthroline Derived N-Doped Carbon Dots as Robust Metal-Free Photocatalysts for PET-RAFT Polymerization and Polymerization-Induced Self-Assembly. Small 2024, 2309893. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.-M.; Chang, Z.-X.; Zhang, W.-J.; Hong, C.-Y. Polymerization-Induced Self-Assembly with Assistance of Aromatic Interactions Facilitates the Formation of Polymeric Nanotubes. Macromolecules 2023, 56, 3296–3303. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Li, Q.; Xiong, B.; Ning, Y.; Yang, P. Interfacial Supra-Assembly of Copolymer Nanoparticles Enables the Formation of Nanocomposite Crystals with a Tunable Internal Structure. J. Am. Chem. Soc. 2023, 145, 21546–21553. [Google Scholar] [CrossRef]
- Quill, T.J.; LeCroy, G.; Halat, D.M.; Sheelamanthula, R.; Marks, A.; Grundy, L.S.; McCulloch, I.; Reimer, J.A.; Balsara, N.P.; Giovannitti, A.; et al. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. Nat. Mater. 2023, 22, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Hueckel, T.; Hocky, G.M.; Palacci, J.; Sacanna, S. Ionic solids from common colloids. Nature 2020, 580, 487–490. [Google Scholar] [CrossRef]
- He, X.; Hsiao, M.-S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nat. Mater. 2017, 16, 481–488. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Hua, C.; Zhao, J.; Li, Y.; Song, Y. Synthesis of silica microspheres—Inspired by the formation of ice crystals—With high homogeneous particle sizes and their applications in photonic crystals. Materials 2018, 11, 2017. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Pan, M.; Zhao, J.; Li, Y.; Song, Y. Entropy-Induced Self-Assembly of Colloidal Crystals with High Reflectivity and Narrow Reflection Bandwidth. Entropy 2019, 21, 180. [Google Scholar] [CrossRef]
- Yao, Z.F.; Zheng, Y.Q.; Li, Q.Y.; Lei, T.; Zhang, S.; Zou, L.; Liu, H.Y.; Dou, J.H.; Lu, Y.; Wang, J.Y.; et al. Wafer-Scale Fabrication of High-Performance n-Type Polymer Monolayer Transistors Using a Multi-Level Self-Assembly Strategy. Adv. Mater. 2019, 31, 1806747. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sakai, F.; Su, L.; Liu, Y.; Wei, K.; Chen, G.; Jiang, M. Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials. Adv. Mater. 2013, 25, 5215–5256. [Google Scholar] [CrossRef] [PubMed]
- Kolishetti, N.; Dhar, S.; Valencia, P.M.; Lin, L.Q.; Karnik, R.; Lippard, S.J.; Langer, R.; Farokhzad, O.C. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl. Acad. Sci. USA 2010, 107, 17939–17944. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.P.; Robin, M.P.; Chassenieux, C.; Colombani, O.; O’Reilly, R.K. The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev. 2014, 43, 2412–2425. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, M.; Qi, F.; Lin, F.R.; Jen, A.K.-Y. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem. Rev. 2024, 124, 2138–2204. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Han, X.; Xing, C.; Glebe, U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. Small 2023, 19, 2207457. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hur, S.M.; Ramirez-Hernandez, A. Effect of Block Sequence on the Solution Self-Assembly of Symmetric ABCBA Pentablock Polymers in a Selective Solvent. J. Phys. Chem. B 2023, 127, 2575–2586. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, C.; Xiong, F.; Wang, T.; Li, S.; Huo, F.; Yao, X. Polymerization-induced self-assembly for efficient fabrication of biomedical nanoplatforms. Research 2023, 6, 0113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhou, S.; Zhang, X.; Shi, C.; Zhang, Y.; Chen, X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers 2024, 16, 2097. https://doi.org/10.3390/polym16152097
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers. 2024; 16(15):2097. https://doi.org/10.3390/polym16152097
Chicago/Turabian StyleHu, Lina, Shujing Zhou, Xiumei Zhang, Chengyang Shi, Yifan Zhang, and Xiaoyi Chen. 2024. "Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials" Polymers 16, no. 15: 2097. https://doi.org/10.3390/polym16152097
APA StyleHu, L., Zhou, S., Zhang, X., Shi, C., Zhang, Y., & Chen, X. (2024). Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers, 16(15), 2097. https://doi.org/10.3390/polym16152097