Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Sample Preparation
2.2. Hyperspectral Imaging
2.3. Multivariate Data Analysis
3. Results and Discussion
3.1. Calibration and Validation
3.2. Detection of Thickness Variations and Inhomogeneity
3.3. Analysis of Textile Samples Finished by Ink Jet Printing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. (Eds.) Near-Infrared Spectroscopy: Principles, Instruments, Applications; Wiley-VCH: Weinheim, Germany, 2002. [Google Scholar]
- Ozaki, Y.; Huck, C.; Tsuchikawa, S.; Engelsen, S.B. (Eds.) Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Springer Nature: Singapore, 2021. [Google Scholar]
- Bakeev, K.A. (Ed.) Process Analytical Technology; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Zheng, Y.; Bai, J.R.; Xu, J.N.; Li, X.Y.; Zhang, Y.M. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system. Waste Manag. 2018, 72, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 115–122. [Google Scholar] [CrossRef]
- Galdón-Navarro, B.; Prats-Montalbán, J.M.; Curbero, S.; Blasco, J.; Ferrer, A. Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. J. Chemom. 2018, 32, e2980. [Google Scholar] [CrossRef]
- Bonifazi, G.; Serranti, S. Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling. Waste Manag. 2006, 26, 627–639. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. Asbestos containing materials detection and classification by the use of hyperspectral imaging. J. Hazard. Mater. 2018, 344, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.S.; Pimentel, M.F.; Honorato, R.S.; Pasquini, C.; Prats-Montalbán, J.M.; Ferrer, A. Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst 2014, 139, 5176–5184. [Google Scholar] [CrossRef]
- de Carvalho, M.A.; Talhavini, M.; Pimentel, M.F.; Amigo, J.M.; Pasquini, C.; Junior, S.A.; Weber, I.T. NIR hyperspectral images for identification of gunshot residue from tagged ammunition. Anal. Methods 2018, 10, 4711–4717. [Google Scholar] [CrossRef]
- Kim, S.J.; Deng, F.; Brown, M.S. Visual enhancement of old documents with hyperspectral imaging. Pattern Recognit. 2011, 44, 1461–1469. [Google Scholar] [CrossRef]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; de la Rie, E.R. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Perez-Avantegui, J.P.; Le Bourdon, G.; Servant, L.; Chapouile, R.; Roldán, C.; Almazán, D.; Díez-de-Pinos, N.; Daniel, F. Colours of the “Images of the floating world”. Non-invasive analyses of Japanese ukiyo-e woodblock prints (18th and 19th centuries) and new contributions to the insight of oriental materials. Microchem. J. 2020, 152, 104374. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Legan, L.; Retko, K.; Kavčič, M.; Kosel, J.; Poohphajai, F.; Diaz, R.H.; Ponnuchamy, V.; Sajinčič, N.; et al. Nondestructive evaluation of heritage object coatings with four hyperspectral imaging systems. Coatings 2021, 11, 244. [Google Scholar] [CrossRef]
- Linderholm, J.; Pierna, J.A.F.; Vincke, D.; Dardenne, P.; Baeten, V. Identification of fragmented bones and their state of preservation using near infrared hyperspectral image analysis. J. Near Infrared Spectrosc. 2013, 21, 459–466. [Google Scholar] [CrossRef]
- Bayarri, V.; Sebastian, M.A.; Ripoli, S. Hyperspectral imaging techniques for the study, conservation and management of rock art. Appl. Sci. 2019, 9, 5011. [Google Scholar] [CrossRef]
- Wilson, R.H.; Nadeau, K.P.; Jaworski, F.B.; Tromberg, B.J.; Durkin, A.J. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. J. Biomed. Opt. 2015, 20, 030901. [Google Scholar] [CrossRef]
- Lorenz, S.; Seidel, P.; Ghamisi, P.; Zimmermann, R.; Tusa, L.; Khodadadzadeh, M.; Contreras, C.; Gloaguen, R. Multi-sensor spectral imaging of geological samples: A data fusion approach using spatio-spectral feature extraction. Sensors 2019, 19, 2787. [Google Scholar] [CrossRef] [PubMed]
- Daikos, O.; Heymann, K.; Scherzer, T. Monitoring of thickness and conversion of thick pigmented UV-cured coatings by NIR hyperspectral imaging. Prog. Org. Coatings 2018, 125, 8–14. [Google Scholar] [CrossRef]
- Scherzer, T. Applications of NIR techniques in polymer coatings and synthetic textiles. In Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B., Eds.; Springer Nature: Singapore, 2021; Chapter 21; pp. 475–516. [Google Scholar]
- Jin, X.; Memon, H.; Tian, W.; Yin, Q.; Zhan, X.; Zhu, C. Spectral characterization and discrimination of synthetic fibers with near-infrared hyperspectral imaging system. Appl. Opt. 2017, 56, 3570–3576. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, X.; Wang, W.; Xin, B. A novel hyperspectral imaging and modeling method for the component identification of woven fabrics. Text. Res. J. 2019, 89, 3752–3767. [Google Scholar] [CrossRef]
- Mäkelä, M.; Rissanen, M.; Sixta, H. Machine vision estimates the polyester content in recyclable waste textiles. Resour. Conserv. Recycl. 2020, 161, 105007. [Google Scholar] [CrossRef]
- Mäkelä, M.; Rissanen, M.; Sixta, H. Identification of cellulose textile fibers. Analyst 2021, 146, 7503–7509. [Google Scholar] [CrossRef]
- Mirschel, G.; Daikos, O.; Scherzer, T.; Steckert, C. Near-infrared chemical imaging used for in-line analysis of inside adhesive layers in textile laminates. Anal. Chim. Acta 2016, 932, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Mirschel, G.; Daikos, O.; Scherzer, T.; Steckert, C. Near-infrared chemical imaging used for in-line analysis of functional finishes on textiles. Talanta 2018, 188, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Daikos, O.; Scherzer, T. Monitoring of the residual moisture content in finished textiles during converting by NIR hyperspectral imaging. Talanta 2021, 221, 121567. [Google Scholar] [CrossRef] [PubMed]
- Daikos, O.; Scherzer, T. In-line monitoring of the application weight of an adhesion promoter and the residual moisture content in textile finishing by hyperspectral imaging using a NIR camera. Prog. Org. Coatings 2020, 157, 106334. [Google Scholar] [CrossRef]
- Daikos, O.; Scherzer, T. In-line monitoring of the application weight of an adhesion promoter and the residual moisture content in textile finishing by hyperspectral imaging using a NIR multiplex spectrometer system. Prog. Org. Coatings 2021, 159, 106395. [Google Scholar] [CrossRef]
- Daikos, O.; Scherzer, T. In-line monitoring of the residual moisture in impregnated black textile fabrics by hyperspectral imaging. Prog. Org. Coatings 2022, 163, 106610. [Google Scholar] [CrossRef]
- Martens, H.; Næs, T. Multivariate Calibration; John Wiley and Sons: Chichester, UK, 1989. [Google Scholar]
- Brereton, R.G. Chemometrics: Data Anaylsis for the Laboratory and the Chemical Plant; John Wiley and Sons: Chichester, UK, 2002. [Google Scholar]
- Brereton, R.G. Applied Chemometrics for Scientists; John Wiley and Sons: Chichester, UK, 2007. [Google Scholar]
Spectral Range [nm] | Preprocessing | Eigenvectors | RMSEC [g/m2] | RMSEP [g/m2] | R2 [%] |
---|---|---|---|---|---|
1325–1600 | Normalization | 2 | 1.22 | 1.22 | 93.0 |
1325–1900 | Normalization | 3 | 1.23 | 1.25 | 92.7 |
1600–1900 | Normalization | 4 | 2.27 | 2.47 | 73.5 |
1325–1600 | Baseline Correction | 2 | 1.19 | 1.24 | 93.0 |
1325–1900 | Baseline Correction | 3 | 1.21 | 1.30 | 92.6 |
1600–1900 | Baseline Correction | 4 | 2.48 | 2.58 | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daikos, O.; Scherzer, T. Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging. Polymers 2024, 16, 1909. https://doi.org/10.3390/polym16131909
Daikos O, Scherzer T. Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging. Polymers. 2024; 16(13):1909. https://doi.org/10.3390/polym16131909
Chicago/Turabian StyleDaikos, Olesya, and Tom Scherzer. 2024. "Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging" Polymers 16, no. 13: 1909. https://doi.org/10.3390/polym16131909
APA StyleDaikos, O., & Scherzer, T. (2024). Monitoring of the Homogeneity of Primer Layers for Ink Jet Printing on Polyester Fabrics by Hyperspectral Imaging. Polymers, 16(13), 1909. https://doi.org/10.3390/polym16131909