Modification of Epoxy Coatings with Fluorocontaining Organosilicon Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acidolytic Polycondensation of Dimethyldimethoxysilane and Methylphenyldimethoxysilane
2.3. Hydrolytic Polycondensation of Dimethyldichlorosilane and Methylphenyldichlorosilane
2.4. Hydrolytic Polycondensation of Methyltrifluoropropidichlorosilane and Methylphenyldichlorosilane
2.5. Preparation of Compositions Based on Organosilicon Copolymers and Epoxy Resin
2.6. Characterizations
2.6.1. Gel Permeation Chromatography
2.6.2. Nuclear Magnetic Resonance Spectroscopy
2.6.3. Optical Interferometry
2.6.4. Refractometry
2.6.5. Sessile Drop Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications. Prog. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Liu, J.; Qu, S.; Suo, Z.; Yang, W. Functional Hydrogel Coatings. Natl. Sci. Rev. 2021, 8, nwaa254. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, M.; Masieri, M.; Pipoli, M.; Morelli, A.; Frigione, M. Anti-Graffiti Behavior of Oleo/Hydrophobic Nano-Filled Coatings Applied on Natural Stone Materials. Coatings 2019, 9, 740. [Google Scholar] [CrossRef]
- Boinovich, L.; Emelyanenko, A. Hydrophobic Materials and Coatings: Principles of Design, Properties and Applications. Russ. Chem. Rev. 2008, 77, 583–600. [Google Scholar] [CrossRef]
- Myronyuk, O.; Baklan, D.; Zilong, J.; Sokolova, L. Obtaining Water-Repellent Coatings Based on Expanded Perlite Materials. Mater. Today Proc. 2022, 62, 7720–7725. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Sidhardhan, S.K.; Jose, S.; Hameed, N.; Salim, N.V.; Siengchin, S.; Pionteck, J.; Magueresse, A.; Grohens, Y. Miscibility, Phase Morphology, Thermomechanical, Viscoelastic and Surface Properties of Poly(ε-Caprolactone) Modified Epoxy Systems: Effect of Curing Agents. Ind. Eng. Chem. Res. 2016, 55, 10055–10064. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Li, M.; Lian, J.; Yang, X.; Xia, J. Preparation of a Light Color Cardanol-Based Curing Agent and Epoxy Resin Composite: Cure-Induced Phase Separation and Its Effect on Properties. Prog. Org. Coat. 2012, 74, 240–247. [Google Scholar] [CrossRef]
- Seo, K.; Kim, M.; Kim, D.H. Candle-Based Process for Creating a Stable Superhydrophobic Surface. Carbon 2014, 68, 583–596. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Yu, L.; Chen, H.; Li, D.; Shi, C.; Xiao, L.; Fan, J. Paraffin-Coated Hydrophobic Hemostatic Zeolite Gauze for Rapid Coagulation with Minimal Adhesion. ACS Appl. Mater. Interfaces 2021, 13, 52174–52180. [Google Scholar] [CrossRef]
- Lin, J.; Chen, X.; Chen, C.; Hu, J.; Zhou, C.; Cai, X.; Wang, W.; Zheng, C.; Zhang, P.; Cheng, J.; et al. Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Z. Facile Fabrication of Ultraviolet Light Cured Fluorinated Polymer Layer for Smart Superhydrophobic Surface with Excellent Durability and Flame Retardancy. J. Colloid Interface Sci. 2019, 547, 153–161. [Google Scholar] [CrossRef]
- Ravi, K.; Sulen, W.L.; Bernard, C.; Ichikawa, Y.; Ogawa, K. Fabrication of Micro-/Nano-Structured Super-Hydrophobic Fluorinated Polymer Coatings by Cold-Spray. Surf. Coat. Technol. 2019, 373, 17–24. [Google Scholar] [CrossRef]
- Sims, C.B.; Lenora, C.U.; Furgal, J.C. Hybrid Tri-Cure Organo-Silicon Coatings for Monument Preservation. Coatings 2022, 12, 1098. [Google Scholar] [CrossRef]
- Voronkov, M.G.; Kochina, T.A. Chemisorbed Protective Organosilicon Coatings on the Surface of Glass. Glass Phys. Chem. 2012, 38, 1–7. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Su, W.; Zhu, L.; Cheng, X.; Wu, J.; Zhao, S.; Zhou, C. Construction of a Durable Superhydrophobic Surface Based on the Oxygen Inhibition Layer of Organosilicon Resins. Thin Solid Film. 2021, 717, 138467. [Google Scholar] [CrossRef]
- Soldatov, M.A.; Sheremet’eva, N.A.; Kalinina, A.A.; Demchenko, N.V.; Serenko, O.A.; Muzafarov, A.M. Synthesis of Fluorine-Containing Organosilicon Copolymers and Their Use for the Preparation of Stable Hydrophobic Coatings Based on the Epoxy Binder. Russ. Chem. Bull. 2014, 63, 267–272. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Soldatov, M.A.; Streltsov, D.R.; Pereyaslavtsev, A.Y.; Volkov, I.O.; Pertsin, A.I. Organosilicon Fluoro-Containing Polymer Brushes Based on Epoxy Matrix: XPS Analysis. Russ. Chem. Bull. 2016, 65, 1072–1075. [Google Scholar] [CrossRef]
- Soldatov, M.A.; Naumkin, A.V.; Pereyaslavtsev, A.Y.; Serenko, O.A.; Pertsin, A.I. Surface Modification of Epoxy Resin by Amphiphilic Fluoroorganosiloxane Copolymers. Russ. Chem. Bull. 2016, 65, 1116–1118. [Google Scholar] [CrossRef]
- Parshina, M.S.; Soldatov, M.A.; Sapozhnikov, D.A.; Serenko, O.A.; Muzafarov, A.M. Formation of Honeycomb Films Based on Cardo Polyimide Modified with Fluorocontaining Organosilicon Copolymers by Breath Figures Method. Macromol. Symp. 2017, 375, 1700035. [Google Scholar] [CrossRef]
- Soldatov, M.A.; Sheremetyeva, N.A.; Serenko, O.A.; Muzafarov, A.M. Synthesis of Fluorine-Containing-Organosilicon Oligomer in Trifluoroacetic Acid as Active Medium. Silicon 2015, 7, 211–216. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Bao, Z.; Fu, Z.; Chen, L. Synthesis and Characterization of Polyacrylate Latex Containing Fluorine and Silicon via Semi-Continuous Seeded Emulsion Polymerization. J. Adhes. Sci. Technol. 2017, 31, 1658–1670. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Xu, T.; Chen, L. Fluoro-Silicone Modified Polyacrylate Latex Emulsified with Green Surfactants. J. Surfactants Deterg. 2017, 20, 905–912. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, Y.; Bai, Y. UV-Curable Optical Transparent, Aging Resistance, Liquid-Repellent Coatings Based on a Novel Photosensitive Fluorinated Polysiloxane with Long Perfluoroalkyl Side Chains. Eur. Polym. J. 2022, 175, 111324. [Google Scholar] [CrossRef]
- Boinovich, L.; Emelyanenko, A. The Prediction of Wettability of Curved Surfaces on the Basis of the Isotherms of the Disjoining Pressure. Colloids Surf. A Physicochem. Eng. Asp. 2011, 383, 10–16. [Google Scholar] [CrossRef]
- Sataeva, N.E.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M.; Boinovich, L.B. Laser Treatment of Aluminum Alloys for Fabrication of Weather-Resistant Superhydrophobic Coatings. Nanotechnol. Russ. 2020, 15, 141–145. [Google Scholar] [CrossRef]
- Kuzina, E.A.; Omran, F.S.; Emelyanenko, A.M.; Boinovich, L.B. On the Significance of Selecting Hydrophobization Conditions for Obtaining Stable Superhydrophobic Coatings. Colloid J. 2023, 85, 59–65. [Google Scholar] [CrossRef]
- Kuzina, E.A.; Emelyanenko, K.A.; Domantovskii, A.G.; Emelyanenko, A.M.; Boinovich, L.B. Preparation of Stable Superhydrophobic Coatings on a Paint Surface with the Use of Laser Treatment Followed by Hydrophobizer Deposition. Colloid J. 2022, 84, 445–455. [Google Scholar] [CrossRef]
- Malkin, A.; Ascadsky, A.; Kovriga, V.; Chalykh, A.E. Experimental Methods of Polymer Physics; MIR Publishers: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Plyusnina, I.O.; Budylin, N.Y.; Shapagin, A.V. Phase Equilibria, Diffusion and Structure in the Epoxypolycaprolactone System. Polymers 2023, 15, 117. [Google Scholar] [CrossRef]
- Nikulova, U.V.; Chalykh, A.E. Phase Equilibrium and Interdiffusion in Blends of Polystyrene with Polyacrylates. Polymers 2021, 13, 2283. [Google Scholar] [CrossRef]
Sample | Molar Ratios of Reagents | ||
---|---|---|---|
Dimethyldiethoxysilane | Methylphenyldimethoxysilane | Acetic Acid | |
SiO1 | 10 | 0 | 30 |
SiO2 | 8 | 2 | 30 |
SiO3 | 6 | 4 | 30 |
SiO4 | 4 | 6 | 30 |
SiO5 | 2 | 8 | 30 |
SiO6 | 0 | 10 | 30 |
Sample | Molar Ratios of Reagents | |
---|---|---|
Dimethyldichlorosilane | Methylphenyldichlorosilane | |
DClSiO1 | 10 | 0 |
DClSiO2 | 8 | 2 |
DClSiO3 | 6 | 4 |
DClSiO4 | 4 | 6 |
DClSiO5 | 2 | 8 |
DClSiO6 | 0 | 10 |
Sample | Molar Ratios of Reagents | |
---|---|---|
(3,3,3-Trifluoropropyl)methyldichlorosilane | Methylphenyldichlorosilane | |
FSiO1 | 10 | 0 |
FSiO2 | 8 | 2 |
FSiO3 | 6 | 4 |
FSiO4 | 4 | 6 |
FSiO5 | 2 | 8 |
FSiO6 | 0 | 10 |
Parameter | Testing Method | EP-5287 | EP-5287 + FSiO3 | EP-5287 + FSiO4 |
---|---|---|---|---|
Film adhesion by cross-cut test, score | ISO 2409:2013 | 0 | 0 | 0 |
Relative hardness according to a pendulum device (König pendulum) | ISO 1522:2022 | 0.5 | 0.5 | 0.5 |
Drying time of the film, at the temperature of 60 °C, h | ISO 9117-3:2010 | 1 | 1 | 1 |
Film strength upon impact, cm | ISO 6272-1:2002 | 65 | 65 | 65 |
Film elasticity by bend test, mm | ISO 1519:2002 | 2 | 2 | 2 |
Sample Name | γd, mJ/m2 | γp, mJ/m2 | γ, mJ/m2 | R-Square |
---|---|---|---|---|
Epoxy | 9.60 | 35.44 | 45.04 | 0.9997 |
Epoxy + FSiO4 | 18.31 | 7.19 | 25.50 | 0.9058 |
Epoxy + FSiO5 | 19.60 | 11.18 | 30.78 | 0.9946 |
EP-5287 | 12.67 | 25.64 | 38.31 | 0.9997 |
EP-5287 + FSiO3 | 20.06 | 5.38 | 25.44 | 0.9389 |
EP-5287 + FSiO4 | 20.55 | 6.81 | 27.36 | 0.9975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutskikh, D.V.; Shapagin, A.V.; Plyusnina, I.O.; Budylin, N.Y.; Shcherbina, A.A.; Soldatov, M.A. Modification of Epoxy Coatings with Fluorocontaining Organosilicon Copolymers. Polymers 2024, 16, 1571. https://doi.org/10.3390/polym16111571
Krutskikh DV, Shapagin AV, Plyusnina IO, Budylin NY, Shcherbina AA, Soldatov MA. Modification of Epoxy Coatings with Fluorocontaining Organosilicon Copolymers. Polymers. 2024; 16(11):1571. https://doi.org/10.3390/polym16111571
Chicago/Turabian StyleKrutskikh, Dmitriy V., Aleksey V. Shapagin, Irina O. Plyusnina, Nikita Yu. Budylin, Anna A. Shcherbina, and Mikhail A. Soldatov. 2024. "Modification of Epoxy Coatings with Fluorocontaining Organosilicon Copolymers" Polymers 16, no. 11: 1571. https://doi.org/10.3390/polym16111571
APA StyleKrutskikh, D. V., Shapagin, A. V., Plyusnina, I. O., Budylin, N. Y., Shcherbina, A. A., & Soldatov, M. A. (2024). Modification of Epoxy Coatings with Fluorocontaining Organosilicon Copolymers. Polymers, 16(11), 1571. https://doi.org/10.3390/polym16111571