Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Route
2.1.1. Polymer Preparation
2.1.2. Cement Preparation
→ Ca2.5Zn0.5(PO4)2 +6NH4NO3 + 2H2O
Ca2.5Zn0.5(PO4)2 + Ca(H2PO4)2·H2O + 7H2O → 4(Ca,Zn)HPO4·2H2O
2.1.3. Composite Preparation
2.2. Dissolution Behavior
2.3. PXDR
2.4. FT-IR Spectroscopy
2.5. Bending Strength
2.6. Antibacterial Test
2.7. Biocompatibility Tests
3. Results and Discussion
3.1. PXRD Study
3.2. Behavior of ZnBC in Ringer Solution
- (1)
- The most unstable OCP → HAPCa8(HPO4)2(PO4)4·5H2O → 4Ca10(PO4)6(OH)2 + 6H3PO4 + 17H2OCa8(HPO4)2(PO4)4·5H2O → ½ Ca10(PO4)6(OH)2 + 3CaHPO4
- (2)
- DCPD → HAP10CaHPO4·2H2O → Ca10(PO4)6(OH)2 + 4H3PO4 + 18H2O
- (3)
- TCP → HAP10Ca3(PO4)2 + 6H2O → 3Ca10(PO4)6(OH)2 + 2H3PO4
3.3. FT-IR Study
3.4. SEM Observations
3.5. Bending Strength Measurements
3.6. Antibacterial Activity
3.7. The Viability of Cells on the Composite Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palangkaraya, A.; Yong, J. Population ageing and its implications on aggregate health care demand: Empirical evidence from 22 OECD countries. Int. J. Health Care Finance Econ. 2009, 9, 391–402. [Google Scholar] [CrossRef]
- Boyapati, P.C.; Srinivas, K.; Chandu, B. Green synthesis of graphene-hydroxyapatite nanocomposites with improved mechanical properties for bone implant materials. Mater. Chem. Phys. 2023, 296, 127331. [Google Scholar] [CrossRef]
- Preobrazhenskiy, I.I.; Putlyaev, V.I. Synthesis and Phase Transformations of Compounds in the Mg4Na(PO4)3–Mg3(PO4)2 System as Promising Phases for the Fabrication of Bioceramics. Inorg. Mater. 2022, 58, 349–355. [Google Scholar] [CrossRef]
- Luo, J.; Ajaxon, I.; Ginebra, M.P.; Engqvist, H.; Persson, C. Compressive, diametral tensile and biaxial flexural strength of cutting-edge calcium phosphate cements. J. Mech. Behav. Biomed. Mater. 2016, 60, 617–627. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Fomin, A.S.; Barinov, S.M.; Davydova, G.A.; Selezneva, I.I.; Preobrazhenskii, I.I.; Rusakov, M.K.; Fomina, A.A.; Volchenkova, V.A. Synthesis and Properties of Manganese-Containing Calcium Phosphate Materials. Inorg. Mater. 2020, 56, 700–706. [Google Scholar] [CrossRef]
- Gallinetti, S.; Canal, C.; Ginebra, M.P.; Ferreira, J. Development and characterization of biphasic hydroxyapatite/β-TCP cements. J. Am. Ceram. Soc. 2014, 97, 1065–1073. [Google Scholar] [CrossRef]
- Thein-Han, W.; Liu, J.; Xu, H.H. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent. Mater. 2012, 28, 1059–1070. [Google Scholar] [CrossRef]
- Tamimi, F.; Sheikh, Z.; Barralet, J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomater. 2012, 8, 474–487. [Google Scholar] [CrossRef]
- Rau, J.V.; Wu, V.M.; Graziani, V.; Fadeeva, I.V.; Fomin, A.S.; Fosca, M.; Uskoković, V. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. Mater. Sci. Eng. C 2017, 79, 270–279. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Lazoryak, B.I.; Davidova, G.A.; Murzakhanov, F.F.; Gabbasov, B.F.; Petrakova, N.V.; Fosca, M.; Barinov, S.M.; Vadalà, G.; Uskoković, G.V.; et al. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. Mater. Sci. Eng. C 2021, 129, 112410. [Google Scholar] [CrossRef]
- Rau, J.V.; Fadeeva, I.V.; Fomin, A.S.; Barbaro, K.; Galvano, E.; Ryzhov, A.P.; Murzakhanov, F.; Gafurov, M.; Orlinskii, S.; Antoniac, I.; et al. Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomater. Sci. Eng. 2019, 5, 6632–6644. [Google Scholar] [CrossRef]
- Antoniac, I.V.; Filipescu, M.; Barbaro, K.; Bonciu, A.; Birjega, R.; Cotrut, C.M.; Galvano, E.; Fosca, M.; Fadeeva, I.V.; Vadalà, G.; et al. Iron Ion-Doped Tricalcium Phosphate Coatings Improve the Properties of Biodegradable Magnesium Alloys for Biomedical Implant Application. Adv. Mater. Interfaces 2020, 7, 2000531. [Google Scholar] [CrossRef]
- Graziani, G.; Barbaro, K.; Fadeeva, I.V.; Fosca, M.; Vadalà, G.; Maltarello, M.C.; Baldini, N.; Rau, J.V. Ionized jet deposition of antimicrobial silver-doped TCP nanocoatings. Bioact. Mater. 2021, 6, 2629–2642. [Google Scholar] [CrossRef]
- Fadeeva, I.; Komlev, V.; Gurin, A.; Fomin, A.; Barinov, S. Advanced materials for medicine. Powder Metall. Prog. 2014, 14, 181. [Google Scholar]
- Eberle, J.; Schmidmayer, S.; Erben, R.G.; Stangassinger, M.; Roth, H.-P. Skeletal Effects of Zinc Deficiency in Growing Rats. J. Trace Elem. Med. Biol. 1999, 13, 21–26. [Google Scholar] [CrossRef]
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef]
- Tannoury, C.A.; An, H.S. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014, 14, 552–559. [Google Scholar] [CrossRef]
- Hustedt, J.W.; Blizzard, D.J. The controversy surrounding bone morphogenetic proteins in the spine: A review of current research. Yale J. Biol. Med. 2014, 87, 549. [Google Scholar]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 2000, 31, D37–D47. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 1–28. [Google Scholar] [CrossRef]
- Tsuji, H.; Suzuyoshi, K. Environmental degradation of biodegradable polyesters 1. Poly (ε-caprolactone), poly [(R)-3-hydroxybutyrate], and poly (L-lactide) films in controlled static seawater. Polym. Degr. Stab. 2002, 75, 347–355. [Google Scholar] [CrossRef]
- Iordanskii, A.L.; Ol’khov, A.A.; Karpova, S.G.; Kucherenko, E.L.; Kosenko, R.Y.; Rogovina, S.Z.; Chalykh, A.E.; Berlin, A.A. Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs. Polym. Sci. Ser. A 2017, 59, 343–353. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Goldberg, M.A.; Preobrazhensky, I.I.; Mamin, G.V.; Davidova, G.A.; Agafonova, N.V.; Fosca, M.; Russo, F.; Barinov, S.M.; Cavalu, S.; et al. Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2021, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Merkle, H.P.; Van Landuyt, P.; Trophardy, G.; Lemaitre, J. Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. J. Mater. Sci. Mater. Med. 2000, 11, 111–116. [Google Scholar] [CrossRef]
- Bicker, M.; Müller, M.; Mittermüller, M.; Haines, D.; Rothhaar, U. Comparative extractable studies for injectables and medical devices aligned with USP<1663> and ISO 10993 Guidelines. ONdrugDelivery 2021, 120, 86–95. [Google Scholar]
- Poltavtseva, R.A.; Nikonova, Y.A.; Selezneva, I.I.; Yaroslavtseva, A.K.; Stepanenko, V.N.; Esipov, R.S.; Pavlovich, S.V.; Klimantsev, I.V.; Tyutyunnik, N.V.; Grebennik, T.K.; et al. Mesenchymal Stem Cells from Human Dental Pulp: Isolation, Characteristics, and Potencies of Targeted Differentiation. Bull. Exp. Biol. Med. 2014, 158, 164–169. [Google Scholar] [CrossRef]
- Matthies, S.; Lutteroti, L.; Wenk, H.R. Advances in Texture Analysis from Diffraction Spectra. J. Appl. Crystallogr. 1997, 30, 31–42. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Dehkordi, A.N.; Jamshidizad, A.; Chehelgerdi, M. Preparation of brushite cements with improved properties by adding graphene oxide. Int. J. Nanomed. 2019, 14, 3785. [Google Scholar] [CrossRef]
- Barralet, J.; Best, S.; Bonfield, W. Carbonate substitution in precipitated hydroxyapatite: An investigation into the effects of reaction temperature and bicarbonate ion concentration. J. Biomed. Mater. Res. 1998, 41, 79–86. [Google Scholar] [CrossRef]
- Barinov, S.M.; Bibikov, V.Y.; Durisin, J.; Fadeeva, I.V.; Ferro, D.; Komlev, V.S.; Medvecký, Ľ.; Cesaro, S.N.; Rau, J.V. Sintering of porous carbonated apatite bioceramics. Powder Metall. Prog. 2004, 4, 95–103. [Google Scholar]
- Flewitt, P.E.; Wild, R.K. Physical Methods for Materials Characterization; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zeng, H.; Lacefield, W.R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: The effects of various process parameters. Biomaterials 2000, 21, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- El-Ghannam, A. Bone reconstruction: From bioceramics to tissue engineering. Expert Rev. Med Devices 2005, 2, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, I.S.; Dorokhov, A.V.; Kireeva, I.K.; Pyatova, E.N.; Yakshin, V.V.; Tsivadze, A.Y. Potassium, calcium, and strontium complexes with diphenyloxo-18-crown-6. Synthesis and vibrational spectra. Rus. J. Coord. Chem. 2005, 31, 90–94. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Fadeeva, I.V.; Borovikova, E.Y.; Dzhevakov, P.B.; Slukin, P.V.; Zheng, Y.; Xia, D.; Lazoryak, B.I.; Rau, J.V. Antimicrobial properties of co-doped tricalcium phosphates Ca3-2x(M’M”)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+). Ceram. Int. 2022, 48, 29770–29781. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Deyneko, D.V.; Barbaro, K.; Davydova, G.A.; Sadovnikova, M.A.; Murzakhanov, F.F.; Fomin, A.S.; Yankova, V.G.; Antoniac, I.V.; Barinov, S.M.; et al. Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. Nanomaterials 2022, 12, 852. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Z.; Yuan, W.; Li, J.; Cheng, X.; Chi, R.-A. Pressure effecting on morphology of hydroxyapatite crystals in homogeneous system. Crystengcomm 2010, 13, 1632–1637. [Google Scholar] [CrossRef]
- Prasadh, S.; Wong, R.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci. Int. 2018, 15, 48–55. [Google Scholar] [CrossRef]
- Ajaxon, I.; Persson, C. Mechanical properties of brushite calcium phosphate cements. In The World Scientific Encyclopedia of Nanomedicine and Bioengineering II; World Scientific: Singapore, 2021; pp. 285–300. [Google Scholar] [CrossRef]
- Gorst, N.J.S.; Perrie, Y.; Gbureck, U.; Hutton, A.L.; Hofmann, M.P.; Grover, L.M.; Barralet, J.E. Effects of fibre reinforcement on the mechanical properties of brushite cement. Acta Biomater. 2006, 2, 95–102. [Google Scholar] [CrossRef]
- Engstrand, J.; Persson, C.; Engqvist, H. The effect of composition on mechanical properties of brushite cements. J. Mech. Behav. Biomed. Mater. 2014, 29, 81–90. [Google Scholar] [CrossRef]
- Yeng, L.C.; Wahit, M.U.; Othman, N. Thermal and flexural properties of regenerated cellulose (RC)/poly (3-hydroxybutyrate) (PHB) biocomposites. J. Teknol. 2015, 75, 107–112. [Google Scholar] [CrossRef]
- Janssen, A.M.; Chin, N.L.J.; Scheffer, J.J.C.; Svendsen, A.B. Screening for antimicrobial activity of some essential oils by the agar overlay technique. Pharm. Weekbl. Sci. 1986, 8, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, V.A.; Shvindina, N.V.; Permyakova, E.S.; Slukin, P.V.; Ignatov, S.G.; Sirota, B.; Voevodin, A.A.; Shtansky, D.V. Structure and antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method. Colloids Surf. B Biointerfaces 2019, 173, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, V.A.; Sheveyko, A.N.; Permyakova, E.S.; Lee, J.; Voevodin, A.A.; Berman, D.; Manakhov, A.M.; Michlíček, M.; Slukin, P.V.; Firstova, V.V.; et al. TiCaPCON-supported Pt-and Fe-based nanoparticles and related antibacterial activity. ACS Appl. Mater. Interfaces 2019, 11, 28699–28719. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Zheng, Y.; Barbaro, K.; Lebedev, V.N.; Aksenov, S.M.; Borovikova, E.Y.; Gafurov, M.R.; Fadeeva, I.V.; Lazoryak, B.I.; Di Giacomo, G.; et al. Dependence of antimicrobial properties on site-selective arrangement and concentration of bioactive Cu2+ ions in tricalcium phosphate. Ceram. Int. 2023. [Google Scholar] [CrossRef]
- Slepička, P.; Malá, Z.; Rimpelová, S.; Švorčík, V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C 2016, 65, 364–368. [Google Scholar] [CrossRef] [PubMed]
Cement Components | Chemical Formula | Properties |
---|---|---|
ZnTCP | Ca2.5Zn0.5(PO4)2 | 200–400 μm |
MCPM | Ca(H2PO4)2·H2O | 200–400 μm |
Ammonia citrate | HOC(CO2H)(CH2CO2NH4)2 | 200–400 μm |
Citric acid | HOC(CO2H)(CH2CO2H)2 | Water solution, 8 wt.% |
ZnBC | (Ca,Zn)HPO4·2H2O | Setting time—4–5 min, Hardening time—24 h |
PHB-ZnBC | PHB-(Ca,Zn)HPO4·2H2O | Materials ratio PHB:ZnBC = 1:10 |
Assignment | IR Peaks PHB, cm−1 | IR Peaks PHB-ZnBC, cm−1 |
---|---|---|
νas[OH−] + νs[OH−] | 3441 | 3219, 3481 |
νas[CH2] | 2928, 2982 | 2918 |
νs[CH2] | 2882 | 2861 |
ν[RCO–O] | 1690, 1720 | 1623, 1637 |
ν[C–O] | - | 1548, 1582 |
δ[CH2] | 1458 | 1419, 1437, 1453 |
ω[CH2] | 1365, 1377 | 1315, 1344, 1386 |
τ[CH2] | 1227, 1288 | 1236 |
νs[P–O–P] in P2O74− | - | 1208 |
νas[C–O–C] | 1103, 1130, 1180 | 1104, 1137, 1155, 1180 |
ν3[PO43−] | - | 1137 |
ν[C–C] + ν[C–O] | 1057 | 1012, 1040, 1056, 1068, 1073, 1084, 1090 |
ν3[PO43−] | - | 1040, 1056, 1068, 1073, 1084, 1090 |
νs[C–O–C] + ν[C–C] + ρ[CH2] | 910, 940, 953, 980 | 935, 977 |
ν1[PO43−] | - | 977 |
ρ[C–H2] + ν[C–O] | 825, 837, 871, 895 | 800, 836, 883 |
νs[P–O–P] in P2O74− | - | 730, 753 |
δ[C–C–O] + δ[C–O–C] | 606, 671, 687 | 600, 670, 697 |
δ[OH−] | 629 | 615 |
δ[C–O–C] + δ[C–C–O] | 459, 513 | 572 |
ν4[PO43−] | - | 572 |
Bacteria | Sample | 0 h | 6 h | 24 h |
---|---|---|---|---|
E. coli | PHB-ZnBC | 1 ± 0.01 × 106 | 5 ± 0.01 × 106 | 0 |
Control | 5 ± 0.01 × 104 | 6 ± 0.05 × 103 | ||
S aureus | PHB-ZnBC | 3 ± 0.01 × 106 | 2 ± 0.01 × 106 | 0 |
Control | 2 ± 0.01 × 106 | 1 ± 0.05 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadeeva, I.V.; Deyneko, D.V.; Knotko, A.V.; Olkhov, A.A.; Slukin, P.V.; Davydova, G.A.; Trubitsyna, T.A.; Preobrazhenskiy, I.I.; Gosteva, A.N.; Antoniac, I.V.; et al. Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement. Polymers 2023, 15, 2106. https://doi.org/10.3390/polym15092106
Fadeeva IV, Deyneko DV, Knotko AV, Olkhov AA, Slukin PV, Davydova GA, Trubitsyna TA, Preobrazhenskiy II, Gosteva AN, Antoniac IV, et al. Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement. Polymers. 2023; 15(9):2106. https://doi.org/10.3390/polym15092106
Chicago/Turabian StyleFadeeva, Inna V., Dina V. Deyneko, Alexander V. Knotko, Anatoly A. Olkhov, Pavel V. Slukin, Galina A. Davydova, Taisiia A. Trubitsyna, Ilya I. Preobrazhenskiy, Alevtina N. Gosteva, Iulian V. Antoniac, and et al. 2023. "Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement" Polymers 15, no. 9: 2106. https://doi.org/10.3390/polym15092106