Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Extraction from Algae
2.3. Obtaining Membranes from Cellulose Extracted from Algae and the Process of Swelling
3. Results and Discussion
3.1. Cellulose Extraction from Algae
3.2. Dissemination of Membrane Precipitation Results and Membrane Swelling Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azeem, M.; Batool, F.; Iqbal, N.; Ikram-ul-Haq. Chapter 1—Algal-Based Biopolymers. In Chemistry, Biotechnology and Materials Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–31. [Google Scholar] [CrossRef]
- Maria, P.; Cadar, O.; Cadar, S.; Chintoanu, M.; Cioica, N.; Fenesan, M.; Balea, A.; Pascalau, V. Biopolimeri naturali—Sursa de materie prima în realizarea ambalajelor biodegradabile, în vederea protejarii mediului (Natural biopolymers-raw for the manufacture of biodegradabale packing in the sight of environmental protection). ProEnvironment 2011, 4, 139–146. [Google Scholar]
- Özçimen, D.; İnan, B.; Morkoç, O.; Efe, A. A review on algal biopolymers. J. Chem. Eng. Res. Updates 2017, 4, 7–14. [Google Scholar] [CrossRef]
- Wong, K.H.; Tan, I.S.; Foo, H.C.Y.; Chin, L.M.; Cheah, J.R.N.; Sia, J.K.; Tong, K.T.X.; Lam, M.K. Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Convers. Manag. 2022, 253, 115155. [Google Scholar] [CrossRef]
- Jmel, M.A.; Anders, N.; Messaoud, G.B.; Marzouki, M.N.; Spiess, A.; Smaali, I. The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. J. Clean. Prod. 2019, 234, 1421–1427. [Google Scholar] [CrossRef]
- Dominguez, H.; Loret, E.P. Ulva lactuca, A source of troubles and potential riches. Mar. Drugs 2019, 17, 357. [Google Scholar] [CrossRef]
- Dumbrava, A.; Berger, D.; Matei, C.; Radu, M.D.; Gheorghe, E. Characterization and applications of a new composite material obtained by green synthesis, through deposition of zinc oxide onto calcium carbonate precipitated in green seaweeds extract. Ceram. Int. 2018, 44, 4931–4936. [Google Scholar] [CrossRef]
- Bajpai, P. Chapter 10—Emerging sources of biopolymers. In Properties and Applications in Packaging; Elsevier: Amsterdam, The Netherlands, 2019; pp. 197–202. [Google Scholar] [CrossRef]
- Leliaert, F. Green algae: Chlorophyta and Streptophyta. In Encyclopedia of Microbiology Fourth Edition; Elsevier: Amsterdam, The Netherlands, 2019; pp. 457–468. [Google Scholar] [CrossRef]
- Park, G.S.; Crank, J. The glassy state and slow process anomalies. In Diffusion Polymers; Academic: London, UK, 1968. [Google Scholar]
- Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Mihranyan, A. Cellulose from Cladophorales Green Algae: From Environmental Problem to High-Tech Composite Materials. J. Appl. Polym. Sci. 2011, 119, 2449–2460. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Lage, S.; Aluwini, D.F.; Rebours, C.; Brurberg, M.B.; Nitschke, U.; Gentili, F.G. Chemical profiling of the Arctic Sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications. Food Chem. 2021, 341, 127999. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Institute Grigore Antipa. Research Report No. 3, Project MACROEVAL. 2010. Available online: http://www.rmri.ro/WebPages/MACROEVAL/32-144%20Etapa3.pdf (accessed on 20 June 2023).
- Lisha, V.S.; Kothale, R.S.; Sidharth, S.; Kandasubramanian, B. A critical review on employing algae as a feed for polycarbohydrate synthesis. Carbohydr. Polym. Technol. Appl. 2022, 4, 100242. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Torres, F.G.; De-la-Torre, G.E. Green algae as a sustainable source for energy generation and storage technologies. Sustain. Energy Technol. Assess. 2022, 53, 102658. [Google Scholar] [CrossRef]
- Lahaye, M.; Alvarez-Cabal Cimadevilla, E.; Kuhlenkamp, R.; Quemener, B.; Lognone, V.; Dion, P. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J. Appl. Phycol. 1999, 11, 1–7. [Google Scholar] [CrossRef]
- Jmel, M.A.; Messaoud, G.B.; Nejib, M.; Mohamed, M.; Smaali, M.I. Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. Cellulose. Carbohydr. Polym. 2016, 135, 274–279. [Google Scholar] [CrossRef]
- Dobre, T.; Stoica, A.; Pârvulescu, O.C.; Stroescu, M.; Iavorschi, G. Factors influence on bacterial cellulose growth in static reactors. Rev. Chim. 2008, 59, 591–594. [Google Scholar] [CrossRef]
- Chandel, N.; Jain, K.; Jain, A.; Raj, T.; Patel, A.K.; Yang, Y.; Bhatia, S.K. The versatile world of cellulose-based materials in healthcare: From production to applications. Ind. Crop. Prod. 2023, 201, 116929. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, T.; Liu, H.; Tang, Z.; Kuang, X.; Qiao, Y.; Zhang, H.; Zhu, C. Hydrogel/β-FeOOH-Coated Poly(vinylidene fluoride) Membranes with Superhydrophilicity/Underwater Superoleophobicity Facilely Fabricated via an Aqueous Approach for Multifunctional Applications. Polymers 2023, 15, 839. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, Y.; Xu, H. Swelling behavior of hydrogels for colon-site drug delivery. J. Appl. Polym. Sci. 2002, 83, 2835–2842. [Google Scholar] [CrossRef]
- Vrentas, J.S.; Vrentas, C.M. Steady viscoelastic diffusion. J. Appl. Polym. Sci. 2003, 88, 3256–3263. [Google Scholar] [CrossRef]
- Sîrbu, R.; Negreanu-Pîrjol, T.; Mirea, M.; Negreanu-Pîrjol, B.S. Bioactive compounds from three green algae species along Romanian Black Sea Coast with therapeutically properties. Eur. J. Nat. Sci. Med. 2020, 3, 2601–8705. [Google Scholar] [CrossRef]
- Han, J.S.; Kim, S.Y.; Seo, Y.B. Disk-shaped cellulose fibers from red algae, Eucheuma cottonii and its use for high oxygen barrier. Int. J. Biol. Macromol. 2022, 210, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Cioroiu Tirpan, D.R.; Koncsag, C.I.; Dobre, T. Cellulose fibers extraction from Ulva lactuca from the Black Sea. Ovidius Univ. Ann. Chem. 2020, 31, 158–162. [Google Scholar] [CrossRef]
- Gao, H.; Duan, B.; Lu, A.; Deng, H.; Du, Y.; Shi, X. Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll. 2018, 79, 473–481. [Google Scholar] [CrossRef]
- Nøkling-Eide, K.; Tan, F.; Wang, S.; Zhou, Q.; Gravdahl, M.; Langeng, A.M.; Bulone, V.; Aachmann, F.L.; Sletta, H.; Arlov, Ø. Acid preservation of cultivated brown algae Saccharina latissima and Alaria esculenta and characterization of extracted alginate and cellulose. Algal Res. 2023, 71, 103057. [Google Scholar] [CrossRef]
- Buliga, D.I.; Popa, I.; Diacon, A.; Boscornea, C.A. Optimization of Ultrasound-Assisted Extraction of Chlorophyll Using Design of Experiments and Stability Improvement via Encapsulation. UPB Sci. Bull. Ser. B 2022, 84, 59–72. [Google Scholar]
- Filho, A.V.; Santana, L.R.; Motta, N.G.; Passos, L.F.; Wolke, S.I.; Mansilla, A.; Astorga-España, M.S.; Becker, E.M.; de Pereira, C.M.P.; Carreno, N.L.V. Extraction of fatty acids and cellulose from the biomass of algae Durvillaea antarctica and Ulva lactuca: An alternative for biorefineries. Algal Res. 2023, 71, 103084. [Google Scholar] [CrossRef]
- Jastram, A.; Lindner, T.; Luebbert, C.; Sadowski, G.; Kragl, U. Swelling and Diffusion in Polymerized Ionic Liquids-Based Hydrogels. Polymers 2021, 13, 1834. [Google Scholar] [CrossRef]
- Bardajee, R.G.; Hooshyar, Z.; Kabiri, F. Preparation and Investigation on Swelling and Drug Delivery Properties of a Novel Silver/Salep-g-Poly(Acrylic Acid) Nanocomposite Hydrogel. Bull. Korean Chem. Soc. 2012, 33, 2635–2641. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iran. Polym. J. 2010, 19, 375–398. [Google Scholar]
- Lejcus, K.; Spitalniak, M.; Dabrowska, J. Swelling Behaviour of Superabsorbent Polymers for Soil Amendment under Different Loads. Polymers 2018, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- Younis, K.M.; Tareq, Z.A.; Kamal, M.I. Optimization of Swelling, Drug Loading and Release from Natural Polymer Hydrogels. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 012017. [Google Scholar] [CrossRef]
- Crank, J.; Park, G.S. Diffusion in high polymers. Trans. Faraday Soc. 1951, 47, 1072–1084. [Google Scholar] [CrossRef]
- Joshi, S.; Astarita, G. Diffusion-relaxation coupling in polymers which show two-stage sorption phenomena. Polymer 1979, 20, 455–458. [Google Scholar] [CrossRef]
- Rajagopa, K.R. Diffusion through polymeric solids undergoing large deformations. Mater. Sci. Technol. 2003, 19, 1175–1180. [Google Scholar] [CrossRef]
- Singh, J.; Weber, M.E. Kinetics of one-dimensional gel swelling and collapse for large volume change. Chem. Eng. Sci. 1996, 51, 4499–4508. [Google Scholar] [CrossRef]
- Mazich, K.A.; Rossi, G.; Smith, C.A. Kinetics of solvent diffusion and swelling in a model electrometric system. Macromolecules 1992, 25, 6929–6933. [Google Scholar] [CrossRef]
- Rossi, G.; Mazich, K.A. Kinetics of swelling for a cross-linked elastomer or gel in the presence of a good solvent. Phys. Rev. A 1991, 44, 4793–4796. [Google Scholar] [CrossRef]
- Li, H.; Ng, T.Y.; Yew, Y.K.; Lam, K.Y. Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromolecules 2005, 6, 109–120. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Kee, D.D. Mass transport through swelling membranes. Int. J. Eng. Sci. 2005, 43, 1464–1470. [Google Scholar] [CrossRef]
- Afif, A.E.; Grme, M. Non-Fickian mass transport in polymers. J. Rheol. 2002, 46, 591–628. [Google Scholar] [CrossRef]
No. crt. | Solid/Liquid Ratio, S | Ethanol Concentration %, E | Concentration of Salts %, C | Cellulose Yield, R | |
---|---|---|---|---|---|
g/L | Ppm | ||||
1 | 1/20 | 90% | 2 | 0.085 | 20.817% ± 0.004 |
2 | 1/20 | 90% | 4 | 0.898 | 20.944% ± 0.002 |
3 | 1/20 | 60% | 2 | 0.085 | 4.494% ± 0.001 |
4 | 1/20 | 60% | 4 | 0.898 | 4.625% ± 0.007 |
5 | 1/10 | 90% | 2 | 0.085 | 15.022% ± 0.005 |
6 | 1/10 | 90% | 4 | 0.898 | 15.829% ± 0.003 |
7 | 1/10 | 60% | 2 | 0.085 | 3.781% ± 0.004 |
8 | 1/10 | 60% | 4 | 0.898 | 4.030% ± 0.006 |
t min | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sd % | Eth 99% | 0 | 27.5 | 47.9 | 63.2 | 70.4 | 75.5 | 78.6 | 80.7 | 81.4 | 82.3 | 83.5 | 84.4 | 85.1 |
Eth 80% | 0 | 48.2 | 89.1 | 106.9 | 122.8 | 126.7 | 129.5 | 130.4 | 131.8 | 132.7 | 133.4 | 133.9 | 134.4 | |
Eth 60% | 0 | 71.2 | 114.3 | 145.5 | 163.4 | 177.8 | 185.1 | 189.8 | 192.2 | 193.4 | 194.6 | 195.8 | 196.1 | |
Eth 40% | 0 | 87.5 | 156.2 | 181.2 | 200.1 | 212.5 | 218.7 | 221.2 | 222.6 | 223.7 | 225.1 | 226.2 | 226.8 |
N.c | Eth. Conc (%) | kF0 (m/s) | Des m2/s |
---|---|---|---|
1 | 99 | 4.5 × 10−3 | 0.08 × 10−10 |
2 | 80 | 7.3 × 10−3 | 0.25 × 10−10 |
3 | 60 | 9.7 × 10−3 | 0.52 × 10−10 |
4 | 40 | 11.5 × 10−3 | 1.13 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrichi, C.A.M.; Cioroiu Tirpan, D.R.; Aljanabi, A.A.A.; Trica, B.; Gifu, I.C.; Dobre, T. Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis. Polymers 2023, 15, 4673. https://doi.org/10.3390/polym15244673
Patrichi CAM, Cioroiu Tirpan DR, Aljanabi AAA, Trica B, Gifu IC, Dobre T. Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis. Polymers. 2023; 15(24):4673. https://doi.org/10.3390/polym15244673
Chicago/Turabian StylePatrichi, Claudia Ana Maria, Doinita Roxana Cioroiu Tirpan, Ali A. Abbas Aljanabi, Bogdan Trica, Ioana Catalina Gifu, and Tanase Dobre. 2023. "Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis" Polymers 15, no. 24: 4673. https://doi.org/10.3390/polym15244673
APA StylePatrichi, C. A. M., Cioroiu Tirpan, D. R., Aljanabi, A. A. A., Trica, B., Gifu, I. C., & Dobre, T. (2023). Extraction of Cellulose from Ulva lactuca Algae and Its Use for Membrane Synthesis. Polymers, 15(24), 4673. https://doi.org/10.3390/polym15244673