Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance
Abstract
:1. Introduction
2. Methodology and Experimental Section
2.1. Materials
2.2. Synthesis of PCM-Composite
2.3. Characterization
3. Results and Discussion
3.1. Characterization of WCM Substance
Structural and Morphological WCM Characterization
- Structural characterization using XRD pattern:
- Morphological characterization using SEM micrographs:
- Morphological characterization using TEM micrographs:
- Fourier transforms infrared measurements
3.2. Thermal Energy Storage (TES) Performance
3.2.1. Melting/Solidification Cycles
3.2.2. Heat Profile Yield
3.3. Overall Heat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaheen, T.I.; Emam, H.E. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis. Int. J. Biol. Macromol. 2018, 107, 1599–1606. [Google Scholar] [CrossRef]
- Valentini, F.; Dorigato, A.; Pegoretti, A.; Tomasi, M.; Soraru, G.D.; Biesuz, M. Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture. J. Mater. Sci. 2021, 56, 1537–1550. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Lin, S.C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Sol. Energy 2014, 109, 82–92. [Google Scholar] [CrossRef]
- Han, X.; Wang, X.; Tian, W.; Wang, Y.; Wang, J.; Lam, F.; Jiang, S. A Strong, Tough and Fire-Retardant Biomimetic Multifunctional Wooden Laminate. Polymers 2023, 15, 4063. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.-P.; Yu, C.-C. Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res. Lett. 2012, 7, 611. [Google Scholar] [CrossRef] [PubMed]
- Thabet, R.H.; Fouad, M.K.; Ali, I.A.; El Sherbiney, S.A.; Tony, M.A. Magnetite-based nanoparticles as an efficient hybrid heterogeneous adsorption/oxidation process for reactive textile dye removal from wastewater matrix. Int. J. Environ. Anal. Chem. 2023, 103, 2636–2658. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 2018, 16, 845–859. [Google Scholar] [CrossRef]
- Raoux, S.; Wełnic, W.; Ielmini, D. Phase Change Materials and Their Application to Nonvolatile Memories. Chem. Rev. 2010, 110, 240–267. [Google Scholar] [CrossRef]
- Sharif, M.K.A.; Al-Abidi, A.A.; Mat, S.; Sopian, K.; Ruslan, M.H.; Sulaiman, M.Y.; Rosli, M.A.M. Review of the application of phase change material for heating and domestic hot water systems. Renew. Sustain. Energy Rev. 2015, 42, 557–568. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Nian, H.; Zhang, X.; Dong, O.; Ren, X.; Zeng, J.; Hai, C.; Shen, Y. Advanced Nanocomposite Phase Change Material Based on Calcium Chloride Hexahydrate with Aluminum Oxide Nanoparticles for Thermal Energy Storage. Energy Fuels 2017, 31, 6560–6567. [Google Scholar] [CrossRef]
- Yudong, L.; Jiangqing, W.; Chuangjian, S.; Shichao, G.; Yongkun, G.; Quangui, P. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids. Appl. Therm. Eng. 2017, 115, 1226–1236. [Google Scholar] [CrossRef]
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Prasad, D.M.; Senthilkumar, R.; Lakshmanarao, G.; Krishnan, S.; Prasad, B.S. A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy 2019, 7, 507–526. [Google Scholar] [CrossRef]
- Hou, Y.; Vidu, R.; Stroeve, P. Solar energy storage methods. Ind. Eng. Chem. Res. 2011, 50, 8954–8964. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Alnaimat, F.; Rashid, Y. Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions. Energies 2019, 12, 4164. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef]
- Abedin, A.H.; Rosen, M.A. A critical review of thermochemical energy storage systems. Open Renew. Energy J. 2011, 4, 42–46. [Google Scholar] [CrossRef]
- Wong-Pinto, L.-S.; Milian, Y.; Ushak, S. Progress on use of nanoparticles in salt hydrates as phase change materials. Renew. Sustain. Energy Rev. 2020, 122, 109727. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Zondag, H.A. Sorption heat storage. In Solar Energy Storage; Academic Press: Cambridge, MA, USA, 2015; pp. 135–154. [Google Scholar]
- Luo, L.; Le Pierrès, N. Innovative systems for storage of thermal solar energy in buildings. In Solar Energy Storage; Academic Press: Cambridge, MA, USA, 2015; pp. 27–62. [Google Scholar]
- Tariq, S.L.; Ali, H.M.; Akram, M.A.; Janjua, M.M.; Ahmadlouydarab, M. Nanoparticles enhanced phase change materials (NePCMs)—A recent review. Appl. Therm. Eng. 2020, 176, 115305. [Google Scholar] [CrossRef]
- Fan, L.-W.; Zhu, Z.-Q.; Zeng, Y.; Ding, Q.; Liu, M.-J. Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials (NePCM). Int. J. Heat Mass Transf. 2016, 95, 1057–1069. [Google Scholar] [CrossRef]
- Blanco, M. (Ed.) Advances in Concentrating Solar Thermal Research and Technology; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Oyewo, O.A.; Adeniyi, A.; Sithole, B.B.; Onyango, M.S. Sawdust-Based Cellulose Nanocrystals Incorporated with ZnO Nanoparticles as Efficient Adsorption Media in the Removal of Methylene Blue Dye. ACS Omega 2020, 5, 18798–18807. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, H.; Fazlzadeh, M.; Afshin, S.; Arfaeinia, H.; Feizizadeh, A.; Poureshgh, Y.; Rashtbari, Y. Efficiency of activated carbon prepared from scrap tires magnetized by Fe3O4 nanoparticles: Characterisation and its application for removal of reactive blue19 from aquatic solutions. Int. J. Environ. Anal. Chem. 2022, 102, 1911–1925. [Google Scholar] [CrossRef]
- Tony, M.A. Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage 2021, 3, e238. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, D.; Zhang, X.; Huang, J. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy Fuels 2010, 24, 1894–1898. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Xin, Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim. Acta 2009, 488, 39–42. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Deenadhayalan, M.; Kalaiselvam, S. Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers. Manag. 2014, 86, 864–872. [Google Scholar] [CrossRef]
- Kim, D.H.; Ryu, H.W.; Moon, J.H.; Kim, J. Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J. Power Sources 2006, 163, 196–200. [Google Scholar] [CrossRef]
- Zhu, D.; Li, X.; Wang, N.; Wang, X.; Gao, J.; Li, H. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr. Appl. Phys. 2009, 9, 131–139. [Google Scholar] [CrossRef]
- Thabet, R.H.; Fouad, M.K.; Sherbiny, S.A.E.; Tony, M.A. Zero-Waste Approach: Assessment of Aluminum-Based Waste as a Photocatalyst for Industrial Wastewater Treatment Ecology. Int. J. Environ. Res. 2022, 16, 1–19. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kamel, S.H.; Al-Ajeely, A.N.M. Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems. Saussurea 2015, 5, 48–55. [Google Scholar]
- Chieruzzi, M.; Miliozzi, A.; Crescenzi, T.; Torre, L.; Kenny, J.M. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage. Nanoscale Res. Lett. 2015, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Tony, M.A. Nexus approach: ZSM-12 derived from industrial waste into microencapsulated in organic wax for solar energy storage system. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 1–19. [Google Scholar] [CrossRef]
- Wen, B.; Wang, F.; Xu, X.; Ding, Y.; Zhang, S.; Yang, M. The Effect of Encapsulation of Nano Zinc Oxide with Silica on the UV Resistance of Polypropylene. Polym. Technol. Eng. 2011, 50, 1375–1382. [Google Scholar] [CrossRef]
- Xu, J.; Shi, S.; Zhang, X.; Wang, Y.; Zhu, M.; Li, L. Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol–gel technique. Mater. Sci. Semicond. Process. 2013, 16, 732–737. [Google Scholar] [CrossRef]
- Tony, M.A. From biomass residue to solar thermal energy: The potential of bagasse as a heat storage material. Euro-Mediterr. J. Environ. Integr. 2020, 5, 17. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, M.; An, S.S.A.; Yi, D.K. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells. Int. J. Nanomed. 2014, 9, 3707–3718. [Google Scholar]
- Pise, A.T.; Waghmare, A.V.; Talandage, V.G. Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System. Asian J. Eng. Appl. Technol. 2013, 2, 360–366. [Google Scholar] [CrossRef]
- Hajare, V.S.; Gawali, B.S. Experimental study of latent heat storage system using nano-mixed phase change material. Int. J. Eng. Technol. Manag. Appl. Sci. 2015, 3, 37–44. [Google Scholar]
- Hematian, A.; Ajabshirchi, Y.; Behfar, H.; Ghahramani, H. Designing, Construction and Analysis of Speed Control System of the Fan with PV Feeding Source in an Air Solar Collector. Mod. Appl. Sci. 2012, 6, 136. [Google Scholar] [CrossRef]
- Skovajsa, J.; Koláček, M.; Zálešák, M. Phase change material based accumulation panels in combination with renewable energy sources and thermoelectric cooling. Energies 2017, 10, 152. [Google Scholar] [CrossRef]
- Fang, G.; Chen, Z.; Li, H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem. Eng. J. 2010, 163, 154–159. [Google Scholar] [CrossRef]
- Fang, X.; Fan, L.W.; Ding, Q.; Wang, X.; Yao, X.L.; Hou, J.F.; Cen, K.F. Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets. Energy Fuels 2013, 27, 4041–4047. [Google Scholar] [CrossRef]
- Farahat, M.A.; Mousa, M.M.; Mahmoud, N.H. Solar distiller with flat plate collector and thermal storage. Int. Conf. Appl. Mech. Mech. Eng. 2016, 17, 1–11. [Google Scholar] [CrossRef]
- Nabwey, H.A.; Tony, M.A. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material. Nanomaterials 2023, 13, 2635. [Google Scholar] [CrossRef] [PubMed]
- Bondareva, N.S.; Gibanov, N.S.; Sheremet, M.A. Computational Study of Heat Transfer inside Different PCMs Enhanced by Al2O3 Nanoparticles in a Copper Heat Sink at High Heat Loads. Nanomaterials 2020, 10, 284. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Aghli, Y.; Alavi, E.S.; Sardarabadi, M.; Passandideh-Fard, M. Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection. Appl. Therm. Eng. 2017, 111, 271–279. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dinesh, R.; Roseline, A.A.; Kalaiselvam, S. Performance analysis of heat pipe aided NEPCM heat sink for transient electronic cooling. Microelectron. Reliab. 2017, 73, 1–13. [Google Scholar] [CrossRef]
- Zabalegui, A.; Lokapur, D.; Lee, H. Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int. J. Heat Mass Transf. 2014, 78, 1145–1154. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Hu, P.; Hu, G. Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids PCM. Int. J. Refrig. 2015, 50, 80–86. [Google Scholar] [CrossRef]
- Hussain, S.I.; Dinesh, R.; Roseline, A.A.; Dhivya, S.; Kalaiselvam, S. Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017, 143, 17–24. [Google Scholar] [CrossRef]
- Ghoghaei, M.S.; Mahmoudian, A.; Mohammadi, O.; Shafii, M.B.; Jafari Mosleh, H.; Zandieh, M.; Ahmadi, M.H. A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. J. Therm. Anal. Calorim. 2021, 145, 245–268. [Google Scholar] [CrossRef]
- Wu, W.; Bostanci, H.; Chow, L.C.; Hong, Y.; Wang, C.M.; Su, M.; Kizito, J.P. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int. J. Heat Mass Transf. 2013, 58, 348–355. [Google Scholar] [CrossRef]
- Zeng, J.; Cao, Z.; Yang, D.; Sun, L.; Zhang, L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J. Therm. Anal. Calorim. 2010, 101, 385–389. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Duan, X. Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage. Sustain. Energy Fuels 2020, 4, 4547–4557. [Google Scholar] [CrossRef]
PCM | Additives | Application | General Comments | Ref. | ||
---|---|---|---|---|---|---|
Name | Type | Type | Amount (%) | |||
Paraffin wax | Organic | Waste Cellulose chips/magnetite | 2% | Heating | Enhancement in overall heat stored | current work |
BaCl2 | Inorganic | MgO | 1% | Supercooling | Enhancement in thermal conductivity | [10] |
n-octadecane paraffin | Organic | Al2O3 | 2% | Heating | Enhancement in thermal conductivity | [51] |
Mn(NO3)2 | Inorganic | Fe3O4 | 1% | Cooling | Decrease in temperature | [52] |
Polyurethane | Organic | Graphite | 1% | Heating | Enhancement in thermal stability | [53] |
Paraffin wax | Organic | ZSM12 | Na | Heating | Higher solidification temperature | [38] |
Lauric & stearic acid | Eutectic | CuO | 1% | Heating | Enhancement thermal conductivity | [32] |
Capric Acid | Organic | CuO | Na | Cooling | Reduction in temperature of the material surface | [53] |
Paraffin Wax | Organic | Carbon nanotubes | 2% | Heating | Increase in storage capacity | [54] |
Water | Organic | Graphene oxide | Na | Supercooling | Reduction in melting temperature | [55] |
Capric acid & oleic acid | Eutectic | Activated carbon nanosheets | 0.1% | Sub-cooling | Enhancement in thermal conductivity | [56] |
CaCl2 | Inorganic | γ-Al2O3 | 1% | Reductions in latent heat | Supercooling | [10] |
Petroleum wax | Organic | α-Al2O3 | 2% | Heating | Enhancement in thermal conductivity | [57] |
Paraffin wax | Organic | Al2O3 | 1.0% | Na | Reduction in melting temperature | [19] |
Paraffin wax | Organic | ZnO | 2.0% | Na | Higher solidification temperature | [19] |
Poly-α-olefin | Organic | Indium | 30% | Na | Double in heat transfer | [58] |
Ethanol | Organic | Ag nanowires | 62% | Heating | Enhancement in thermal conductivity | [59] |
Paraffin-tailing ceramic | Organic | nano-graphene | Na | Water heating | Ehnacmeent laternt heat and thermal conductivity | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, E.A.; Tony, M.A. Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance. Polymers 2023, 15, 4291. https://doi.org/10.3390/polym15214291
Hassan EA, Tony MA. Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance. Polymers. 2023; 15(21):4291. https://doi.org/10.3390/polym15214291
Chicago/Turabian StyleHassan, Ehssan Ahmed, and Maha A. Tony. 2023. "Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance" Polymers 15, no. 21: 4291. https://doi.org/10.3390/polym15214291
APA StyleHassan, E. A., & Tony, M. A. (2023). Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance. Polymers, 15(21), 4291. https://doi.org/10.3390/polym15214291