Homogeneity Enhancement of Mixtures Containing Epoxy Polymer and 100% Reclaimed Asphalt Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Mastic
2.1.2. Epoxy Resins and Curing Agent
2.1.3. RAP
2.2. Methods
2.2.1. Preparation of Nano-Indentation Test Samples
2.2.2. Nanoindentation Test
2.2.3. Preparation of ERAM Mixture Samples
2.2.4. X-ray Computerized Tomography (CT) Test and Analysis
3. Results and Discussion
3.1. Homogeneity of Asphalt Mastic
3.2. Homogeneity of Aggregate
3.2.1. Horizontal Homogeneity of Aggregate
3.2.2. Vertical Homogeneity of Aggregate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, J.; Liu, Y.; Jiang, Y.; Wang, Q.; Xi, Z.; Cai, J.; Xie, H. Performance of epoxy asphalt binder containing warm-mix asphalt additive. Int. J. Pavement Eng. 2021, 22, 223–232. [Google Scholar] [CrossRef]
- Jamshidi, A.; White, G.; Kurumisawa, K. Rheological characteristics of epoxy asphalt binders and engineering properties of epoxy asphalt mixtures–state-of-the-art. Road Mater. Pavement Des. 2021, 23, 1957–1980. [Google Scholar] [CrossRef]
- Zegard, A.; Smal, L.; Naus, R.; Apostolidis, P.; Liu, X.; van de Ven, M.; Erkens, S.; Scarpas, A. Long-lasting surfacing pavements using epoxy asphalt: Province of North Holland case study. In Proceedings of the Transportation Research Board (TRB) 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Xiang, Q.; Xiao, F. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 2020, 235, 117529. [Google Scholar] [CrossRef]
- Petrie, E.M. Handbook of Adhesives and Sealants; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Youtcheff, J.; Gibson, N.; Shenoy, A.; Al-Khateeb, G. The evaluation of epoxy asphalt and epoxy asphalt mixtures. Proc. Can. Tech. Asph. Assoc. 2006, 51, 351–368. [Google Scholar]
- Apostolidis, P.; Liu, X.; Erkens, S.; Scarpas, A. Evaluation of epoxy modification in bitumen. Constr. Build. Mater. 2019, 208, 361–368. [Google Scholar] [CrossRef]
- Apostolidis, P.; Liu, X.; Erkens, S.; Scarpas, T. Oxidative aging of epoxy asphalt. Int. J. Pavement Eng. 2022, 23, 1471–1481. [Google Scholar] [CrossRef]
- Herrington, P.; Alabaster, D. Epoxy modified open-graded porous asphalt. Road Mater. Pavement Des. 2008, 9, 481–498. [Google Scholar] [CrossRef]
- Gonzalez, O.; Munoz, M.; Santamarıa, A.; Garcıa-Morales, M.; Navarro, F.; Partal, P. Rheology and stability of bitumen/EVA blends. Eur. Polym. J. 2004, 40, 2365–2372. [Google Scholar] [CrossRef]
- Herrington, P.; Alabaster, D.; Arnold, G.; Cook, S.; Fussell, A.; Reilly, S. Epoxy Modified Open-Graded Porous Asphalt: Economic Evaluation of Long-Life Pavements, Phase II, Design and Testing of Long-Life Wearing Courses; Land Transport New Zealand Research Report; Land Transport New Zealand: Wellington, New Zealand, 2007. [Google Scholar]
- Berahim, H.; Sirait, K.; Soesianto, F. A new performance of RTV Epoxy Resin Insulation material in tropical climate. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417), Nagoya, Japan, 1–5 June 2003; Volume 2, pp. 607–610. [Google Scholar]
- Nazzal, M.D.; Kim, S.S.; Abbas, A.; Qtaish, L.A.; Holcombe, E.; Hassan, Y.A. Fundamental Evaluation of the Interaction between RAS/RAP and Virgin Asphalt Binders; Ohio University, Department of Civil Engineering: Athens, OH, USA, 2017. [Google Scholar]
- Widyatmoko, I.; Zhao, B.; Elliott, R.; Lloyd, W. Curing characteristics and the performance of epoxy asphalts. In Proceedings of the Tenth International Conference on Asphalt Pavements, Quebec City, QC, Canada, 12–17 August 2006. [Google Scholar]
- Jamshidi, A.; White, G.; Kurumisawa, K. Functional and field performance of epoxy asphalt technology–state-of-the-art. Road Mater. Pavement Des. 2022, 24, 881–918. [Google Scholar] [CrossRef]
- Federation, I.T.W. Long-Life Surfacings for Roads: Field Test Results; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Herrington, P. Epoxy-Modified Porous Asphalt; New Zealand Transport Agency: Wellington, New Zealand, 2009. [Google Scholar]
- Alabaster, D.; Herrington, P.; Waters, J. Optimising long life low noise porous asphalt. In Asphalt Pavements, Proceedings of the International Conference on Asphalt Pavements, Raleigh, NC, USA, 1–5 June 2014; CRC Press: Boca Raton, FL, USA, 2014; pp. 245–254. [Google Scholar]
- Simpson, W.; Griffin, R.; Sommer, H.; Miles, T. Design and construction of epoxy asphalt concrete pavements. Highw. Res. Board Bull. 1960, 47–60. Available online: https://trid.trb.org/view/1285270 (accessed on 17 September 2023).
- Lu, Q.; Bors, J. Alternate uses of epoxy asphalt on bridge decks and roadways. Constr. Build. Mater. 2015, 78, 18–25. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Chappat, M.; Bilal, J. The Environmental Road of the Future: Life Cycle Analysis; Colas SA: Paris, France, 2003; Volume 9, pp. 1–34. [Google Scholar]
- Lee, N.; Chou, C.-P.; Chen, K.-Y. Benefits in energy savings and CO2 reduction by using reclaimed asphalt pavement. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Aurangzeb, Q.; Al-Qadi, I.L.; Ozer, H.; Yang, R. Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resour. Conserv. Recycl. 2014, 83, 77–86. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% recycled hot mix asphalt: A review and analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Luo, T.; Gao, J. The effect of emission trading policy on carbon emission reduction: Evidence from an integrated study of pilot regions in China. J. Clean. Prod. 2020, 265, 121843. [Google Scholar] [CrossRef]
- Williams, B.A.; Willis, J.R.; Shacat, J. Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2019. 2020. Available online: https://trid.trb.org/View/1746439 (accessed on 17 September 2023).
- Wu, J.; Liu, Q.; Wang, Y.; Chen, J.; Wang, D.; Xie, L.; Ago, C. Effect of mixing time and temperature on the homogeneity of asphalt mixtures containing reclaimed asphalt pavement material. Transp. Res. Rec. 2018, 2672, 167–177. [Google Scholar] [CrossRef]
- Bressi, S.; Dumont, A.-G.; Pittet, M.J.C. Cluster phenomenon and partial differential aging in RAP mixtures. Constr. Build. Mater. 2015, 99, 288–297. [Google Scholar] [CrossRef]
- Zhang, K.; Huchet, F.; Hobbs, A.J.C. A review of thermal processes in the production and their influences on performance of asphalt mixtures with reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2019, 206, 609–619. [Google Scholar] [CrossRef]
- Bressi, S.; Pittet, M.; Dumont, A.; Partl, M. A framework for characterizing RAP clustering in asphalt concrete mixtures. Constr. Build. Mater. 2016, 106, 564–574. [Google Scholar] [CrossRef]
- Yi, X.; Chen, H.; Wang, H.; Shi, C.; Yang, J. The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2022, 319, 126122. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.; Oeser, M. Micro-and Meso-scale homogeneity of asphalt mixtures with RAP in thermal-non-equilibrium condition. Constr. Build. Mater. 2021, 304, 124609. [Google Scholar] [CrossRef]
- Zhu, C. Japan TAF epoxy asphalt concrete design and steel bridge deck pavement construction technology. Appl. Mech. Mater. 2013, 330, 905–910. [Google Scholar] [CrossRef]
- Karki, P.; Yuya, P.A.; Kim, Y.-R.; Turner, J.A. Nanomechanical properties of constituent phases in bituminous mixtures. J. Mater. Civ. Eng. 2016, 28, 04016090. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Yi, X.; Xu, G.; Cai, X.; Zhou, Y.; Huang, W. Cracking resistance evaluation of epoxy asphalt mixtures with 100% reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2023, 395, 132320. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, T.; Dong, Z. Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement. Constr. Build. Mater. 2020, 234, 117426. [Google Scholar] [CrossRef]
Materials | Properties | ||||
---|---|---|---|---|---|
Penetration (0.1 mm) | Softening Point (°C) | Ductility (cm, 15 °C) | Viscosity (Pa·s, 135 °C) | Performance Grade | |
Virgin asphalt | 71 | 47.5 | 160.1 | 0.6 | PG 64–22 |
Aged asphalt | 23 | 66.5 | 5.2 | 1.83 | PG 88–16 |
Items | Materials | Values |
---|---|---|
Density (g/cm3) | Epoxy resin (before curing) | 1.118 |
Curing agent (before curing) | 0.852 | |
Viscosity(cps, 25 °C) | Epoxy resin (before curing) | 2.118 |
Curing agent (before curing) | 0.242 | |
Tensile strength (MPa) | Epoxy resin components after curing | 1.65 |
Elongation (%) | 191 |
Probe Type | Half-Open Angle (°) | Effective Cone Angle (°) | Geometric Correction Factor | Young’s Modulus (GPa) | Poisson Ratio |
---|---|---|---|---|---|
Berkovich | 65.27 | 70.3 | 1.034 | 1141 | 0.07 |
Gradation | Aging Degree | ERAM Labels |
---|---|---|
Raw RAP | Original | ROM |
Shot-term aging | RAM | |
Adjusted RAP | Original | AOM |
Shot-term aging | AAM |
Regions | ) | ||
---|---|---|---|
Coarse Aggregate Phase | Fine Aggregate Phase | Air Void Phase | |
712.32 | 21.82 | 5.36 | |
672.45 | 8.84 | 4.28 | |
730.82 | 4.57 | 3.91 | |
744.58 | 8.13 | 1.96 | |
463.55 | 48.16 | 12.02 | |
415.39 | 69.05 | 6.50 | |
347.70 | 102.32 | 8.05 | |
382.89 | 110.11 | 3.13 | |
543.78 | 71.38 | 7.64 | |
626.09 | 30.76 | 1.94 | |
366.32 | 77.63 | 22.70 | |
579.56 | 41.55 | 2.97 | |
560.15 | 64.47 | 4.39 | |
460.97 | 49.62 | 2.09 | |
341.28 | 36.68 | 23.94 | |
483.88 | 102.07 | 2.05 | |
Standard deviation | 135.62 | 33.21 | 6.70 |
Average value | 526.98 | 52.95 | 7.06 |
Coefficient of | 0.26 | 0.63 | 0.95 |
Coefficient of Variation | Coarse Aggregate Phase | Fine Aggregate Phase | Air Void Phase |
---|---|---|---|
0.26 | 0.63 | 0.95 | |
0.24 | 0.44 | 1.06 | |
0.3 | 0.61 | 1.10 | |
0.34 | 0.63 | 1.06 | |
0.36 | 0.67 | 1.06 | |
0.39 | 0.59 | 1.01 | |
0.33 | 0.55 | 1.04 | |
0.37 | 0.54 | 1.06 | |
0.4 | 0.62 | 0.96 | |
0.41 | 0.55 | 0.99 | |
0.38 | 0.45 | 1.00 | |
0.40 | 0.65 | 0.94 | |
0.38 | 0.49 | 1.04 | |
0.41 | 0.53 | 1.04 | |
0.39 | 0.62 | 0.97 | |
0.36 | 0.57 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yi, X.; Chen, H.; Wong, Y.D.; Fan, Y.; Huang, W. Homogeneity Enhancement of Mixtures Containing Epoxy Polymer and 100% Reclaimed Asphalt Pavement. Polymers 2023, 15, 4261. https://doi.org/10.3390/polym15214261
Yang J, Yi X, Chen H, Wong YD, Fan Y, Huang W. Homogeneity Enhancement of Mixtures Containing Epoxy Polymer and 100% Reclaimed Asphalt Pavement. Polymers. 2023; 15(21):4261. https://doi.org/10.3390/polym15214261
Chicago/Turabian StyleYang, Jun, Xingyu Yi, Huimin Chen, Yiik Diew Wong, Yulou Fan, and Wei Huang. 2023. "Homogeneity Enhancement of Mixtures Containing Epoxy Polymer and 100% Reclaimed Asphalt Pavement" Polymers 15, no. 21: 4261. https://doi.org/10.3390/polym15214261
APA StyleYang, J., Yi, X., Chen, H., Wong, Y. D., Fan, Y., & Huang, W. (2023). Homogeneity Enhancement of Mixtures Containing Epoxy Polymer and 100% Reclaimed Asphalt Pavement. Polymers, 15(21), 4261. https://doi.org/10.3390/polym15214261