Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ti3C2Tx MXene Nanosheets
2.3. Preparation of MNx Composites
2.4. Characterization
3. Results and Discussion
3.1. Microstructure of Ti3C2Tx MXene Nanosheets
3.2. Filler Dispersion of MNx Composites
3.3. The Filler Network and Interfacial Interaction in MNx Composites
3.4. Mechanism of Interfacial Interaction between Ti3C2Tx MXene Nanosheets and NR Molecules
3.5. Bound Rubber Contents and Crosslinking Densities of MNx Composites
3.6. Barrier Properties of MNx Composites
3.7. Mechanical properties of MNx composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Xu, K.; Xu, Y.; Wu, Y. Study on prediction model of hazardous chemical accidents. J. Loss Prev. Process Ind. 2020, 66, 104183. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Wu, C. Characteristics of hazardous chemical accidents during hot season in China from 1989 to 2019: A statistical investigation. Saf. Sci. 2020, 129, 104788. [Google Scholar] [CrossRef]
- Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.-Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Accounts Chem. Res. 2012, 45, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Rosman, Y.; Eisenkraft, A.; Milk, N.; Shiyovich, A.; Ophir, N.; Shrot, S.; Kreiss, Y.; Kassirer, M. Lessons Learned From the Syrian Sarin Attack: Evaluation of a Clinical Syndrome Through Social Media. Ann. Intern. Med. 2014, 160, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Choi, M.; Heo, J.; Jung, S.; Ka, D.; Jung, H.; Lee, S.; Jin, Y.; Hong, J. Effect of surface charge density of graphene oxide on chemical warfare agent simulants blocking. Appl. Surf. Sci. 2021, 579, 152225. [Google Scholar] [CrossRef]
- Wisniewski, A.; Pirszel, J. Protection of armoured vehicles against chemical, biological and radiological contamination. Def. Technol. 2020, 17, 384–392. [Google Scholar] [CrossRef]
- Mao, N. 3-High performance textiles for protective clothing. In High Performance Textiles and Their Applications; Lawrence, C.A., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 91–143. [Google Scholar]
- Bensel, C.K. The effects of various thicknesses of chemical protective gloves on manual dexterity. Ergonomics 1993, 36, 687–696. [Google Scholar] [CrossRef]
- Kincl, L.D.; Bhattacharya, A.; Succop, P.A.; Clark, C.S. Postural Sway Measurements: A Potential Safety Monitoring Technique for Workers Wearing Personal Protective Equipment. Appl. Occup. Environ. Hyg. 2002, 17, 256–266. [Google Scholar] [CrossRef]
- Rothe, M.J. Hand eczema. 2nd edition. J. Am. Acad. Dermatol. 2002, 46, 472. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; A Shanks, R.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2018, 49, 97–138. [Google Scholar] [CrossRef]
- Zhang, N.; Pang, Y.; Li, Z.; Yang, C.; Zong, L.; Yang, H.; Wu, H.; Duan, Y.; Zhang, J. Rubber-like and biodegradable poly (vinyl alcohol) composites with triple networks for high-efficiency solvent barrier. Compos. Sci. Technol. 2023, 231, 109801. [Google Scholar] [CrossRef]
- Jose, S.; Thomas, S.; Jibin, K.; Sisanth, K.; Kadam, V.; Shakyawar, D. Surface modification of wool fabric using sodium lignosulfonate and subsequent improvement in the interfacial adhesion of natural rubber latex in the wool/rubber composites. Ind. Crop. Prod. 2022, 177, 114489. [Google Scholar] [CrossRef]
- Kim, K.; Jung, H.; Cho, K.M. ZIF-8/Graphene Oxide Hybrid Membranes as Breathable and Protective Barriers against Chemical Warfare Agents. ACS Appl. Mater. Interfaces 2023, 15, 41755–41762. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Barrera, C.S.; Tardiff, J.L.; Gil, A.; Cornish, K. Liquid guayule natural rubber, a renewable and crosslinkable processing aid in natural and synthetic rubber compounds. J. Clean. Prod. 2020, 276, 122933. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, T.; Qiao, Y.; Liu, H.; Zhang, C.; Zhang, X.; Sun, Y. Effects of microstructures of liquid polyisoprene on the properties of styrene–butadiene rubber/butadiene rubber compounds. Polym. Int. 2023, 72, 798–803. [Google Scholar] [CrossRef]
- Jayathilaka, L.P.I.; Ariyadasa, T.U.; Egodage, S.M. Development of biodegradable natural rubber latex composites by employing corn derivative bio-fillers. J. Appl. Polym. Sci. 2020, 137, 49205. [Google Scholar] [CrossRef]
- George, N.; Varghese, G.A.; Joseph, R. Improved mechanical and barrier properties of Natural rubber-Multiwalled carbon nanotube composites with segregated network structure. Mater. Today Proc. 2019, 9, 13–20. [Google Scholar] [CrossRef]
- Nouraei, M.; Liaghat, G.; Ahmadi, H.; Bahramian, A.R.; Taherzadeh-Fard, A.; Vahid, S. High strain-rate and quasi-static mechanical characteristics of the natural rubber-based elastomer nanocomposite reinforced with alumina nanoparticles. J. Reinf. Plast. Compos. 2022, 42, 871–892. [Google Scholar] [CrossRef]
- Wongwat, S.; Yoksan, R.; Hedenqvist, M.S. Bio-based thermoplastic natural rubber based on poly(lactic acid)/thermoplastic starch/calcium carbonate nanocomposites. Int. J. Biol. Macromol. 2022, 208, 973–982. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, B.; Zhang, W.; Jia, Z.; Jia, D.; Qin, S.; Wang, J.; Razal, J.M.; Wang, X. Ti3C2 MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale 2019, 11, 14712–14719. [Google Scholar] [CrossRef]
- Naguib, M. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2016, 2, 1502–1506. [Google Scholar] [CrossRef]
- Peng, W.; Han, J.; Lu, Y.-R.; Luo, M.; Chan, T.-S.; Peng, M.; Tan, Y. A General Strategy for Engineering Single-Metal Sites on 3D Porous N, P Co-Doped Ti3C2TX MXene. ACS Nano 2022, 16, 4116–4125. [Google Scholar] [CrossRef]
- Xue, R.; Wang, C.-X.; Zhao, Z.-G.; Chen, Y.-H.; Yang, J.; Feng, C.-P. Flexible Silica/MXene/Natural rubber film strain sensors with island chain structure for Healthcare monitoring. J. Colloid Interface Sci. 2023, 650, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Su, J.; Lin, J.; Huang, J.; Weng, M.; Min, Y. Enhancing the light-thermal absorption and conversion capacity of diatom-based biomass/polyethylene glycol composites phase change material by introducing MXene. J. Energy Storage 2023, 72, 108253. [Google Scholar] [CrossRef]
- Han, R.; Xie, Y.; Ma, X. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chin. J. Chem. Eng. 2018, 27, 877–883. [Google Scholar] [CrossRef]
- Aakyiir, M.; Oh, J.-A.; Araby, S.; Zheng, Q.; Naeem, M.; Ma, J.; Adu, P.; Zhang, L.; Mai, Y.-W. Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites. Compos. Sci. Technol. 2021, 214, 108997. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Baumann, W.; Ismeier, M. Grundlagen zu Kautschuk. In Kautschuk und Gummi: Daten und Fakten zum Umweltschutz Band ½; Baumann, W., Ismeier, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 28–51. [Google Scholar]
- Ng, V.M.H.; Huang, H.; Zhou, K.; Lee, P.S.; Que, W.; Xu, J.Z.; Kong, L.B. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. J. Mater. Chem. A 2016, 5, 3039–3068. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2T00000000 MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, L.; Wen, S.; Liu, L. Graphene oxide-supported zinc oxide nanoparticles for chloroprene rubber with improved crosslinking network and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105492. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, X.; Wang, J.; Wen, Y.; Jia, H.; Ji, Q.; Ding, L. Ionic liquid functionalized graphene oxide for enhancement of styrene-butadiene rubber nanocomposites. Polym. Adv. Technol. 2017, 28, 293–302. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L. A green method for preparing conductive elastomer composites with interconnected graphene network via Pickering emulsion templating. Chem. Eng. J. 2018, 342, 112–119. [Google Scholar] [CrossRef]
- Punetha, V.D.; Rana, S.; Yoo, H.J.; Chaurasia, A.; McLeskey, J.T., Jr.; Ramasamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, L.; Feng, W.; Guo, B.; Liu, F.; Jia, D. Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites. Macromolecules 2014, 47, 8663–8673. [Google Scholar] [CrossRef]
- Rao, J.M. Pochan, Mechanics of Polymer−Clay Nanocomposites. Macromolecules 2007, 40, 290–296. [Google Scholar] [CrossRef]
- Angellier, H.; Molina-Boisseau, S.; Dufresne, A. Mechanical Properties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber. Macromolecules 2005, 38, 9161–9170. [Google Scholar] [CrossRef]
- Das, A.; Kasaliwal, G.R.; Jurk, R.; Boldt, R.; Fischer, D.; Stöckelhuber, K.W.; Heinrich, G. Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study. Compos. Sci. Technol. 2012, 72, 1961–1967. [Google Scholar] [CrossRef]
- Sorokin, V.V.; Ecker, E.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, E.Y.; Khokhlov, A.R. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter 2014, 10, 8765–8776. [Google Scholar] [CrossRef]
- Gan, S.; Wu, Z.L.; Xu, H.; Song, Y.; Zheng, Q. Viscoelastic Behaviors of Carbon Black Gel Extracted from Highly Filled Natural Rubber Compounds: Insights into the Payne Effect. Macromolecules 2016, 49, 1454–1463. [Google Scholar] [CrossRef]
- Luo, J.-Q.; Zhao, S.; Zhang, H.-B.; Deng, Z.; Li, L.; Yu, Z.-Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2019, 182, 107754. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, H.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27, 1702807. [Google Scholar] [CrossRef]
- Boota, M.; Anasori, B.; Voigt, C.; Zhao, M.-Q.; Barsoum, M.W.; Gogotsi, Y. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Adv. Mater. 2015, 28, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.-L.; D’auzac, J.; Prevôt, J.-C. The composition of natural latex fromHevea brasiliensis. Clin. Rev. Allergy 1993, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.-B.; Luo, J.-Q.; Wang, Q.-W.; Xu, B.; Hong, S.; Yu, Z.-Z. Highly Electrically Conductive Three-Dimensional Ti3C2Tx MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano 2018, 12, 11193–11202. [Google Scholar] [CrossRef]
- Yan, N.; Buonocore, G.; Lavorgna, M.; Kaciulis, S.; Balijepalli, S.K.; Zhan, Y.; Xia, H.; Ambrosio, L. The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites. Compos. Sci. Technol. 2014, 102, 74–81. [Google Scholar] [CrossRef]
- Bokobza, L. Natural Rubber Nanocomposites: A Review. Nanomaterials 2019, 9, 12. [Google Scholar] [CrossRef]
- Zheng, L.; Jerrams, S.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur. Chem. Eng. J. 2019, 383, 123100. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, D.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites. Compos. Sci. Technol. 2018, 170, 141–147. [Google Scholar] [CrossRef]
- De Kee, D.; Fong, C.F.C.M.; Pintauro, P.; Hinestroza, J.; Yuan, G.; Burczyk, A. Effect of temperature and elongation on the liquid diffusion and permeation characteristics of natural rubber, nitrile rubber, and bromobutyl rubber. J. Appl. Polym. Sci. 2000, 78, 1250–1255. [Google Scholar] [CrossRef]
Samples | MN0 | MN0.5 | MN1 | MN3 |
---|---|---|---|---|
Bound rubber content (%) | - | 0.58 ± 0.03 | 1.53 ± 0.05 | 4.02 ± 0.16 |
CD (×10−4 mol/mL) | 10.27 ± 0.03 | 11.36 ± 0.05 | 13.90 ± 0.04 | 11.27 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhang, M.; Li, X.; Zhou, C.; Yang, G.; Li, H.; Zheng, X. Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber. Polymers 2023, 15, 4260. https://doi.org/10.3390/polym15214260
Chen Q, Zhang M, Li X, Zhou C, Yang G, Li H, Zheng X. Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber. Polymers. 2023; 15(21):4260. https://doi.org/10.3390/polym15214260
Chicago/Turabian StyleChen, Qinyu, Min Zhang, Xiaopeng Li, Chuan Zhou, Guang Yang, Heguo Li, and Xiaohui Zheng. 2023. "Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber" Polymers 15, no. 21: 4260. https://doi.org/10.3390/polym15214260
APA StyleChen, Q., Zhang, M., Li, X., Zhou, C., Yang, G., Li, H., & Zheng, X. (2023). Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber. Polymers, 15(21), 4260. https://doi.org/10.3390/polym15214260