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Abstract: The utilization of reclaimed asphalt pavement (RAP) could reduce the cost of pavements
containing epoxy polymer (EP) materials. This study was aimed at improving the homogeneity of an
EP-reclaimed asphalt mixtures (ERAMs) at both the micro- and meso-scale to provide a reference
for an ERAM production process. At the microscale, nanoindentation tests were conducted to
characterize the diffusion between the EP and aged asphalt mastic. At the mesoscale, computerized
tomography (CT) X-ray scanning and MATLAB analysis were employed to investigate the distribution
of the aggregate within the ERAM. The results revealed that mixing temperature played a significant
role in the diffusion and distribution between the EP and the aged asphalt mastic, thus impacting
the mechanical properties of the material. Heating at 180 ◦C (the recommended mixing temperature
of EP) resulted in a wider blending zone between the EP and the aged asphalt mastic compared to
heating at 160 ◦C (the usual mixing temperature of ordinary reclaimed asphalt mixtures). The overall
dispersion of the aggregate in the ERAM exhibited greater homogeneity in the vertical direction
than in the horizontal direction. Adjusting the gradation of the RAP was found to be effective in
reducing horizontal variability in the distribution of the coarse aggregate, fine aggregate, and air
voids in the ERAM. Adjusting the RAP gradation further enhanced the vertical homogeneity in the
distribution of the fine aggregate, while its impact on the vertical distribution of the coarse aggregate
was minimal. Short-term aging led to increased variability in the distribution of the coarse aggregate,
fine aggregate, and air voids within the ERAM. However, adjusting the gradation was effective in
mitigating the adverse effects of short-term aging on both horizontal and vertical homogeneity in the
aggregate distribution.

Keywords: reclaimed asphalt pavement; epoxy resin; asphalt mastic; aggregate; diffusion; homogeneity

1. Introduction

Epoxy asphalt (EA) is a modified asphalt consisting primarily of an epoxy polymer (EP)
and asphalt [1,2]. EA finds wide application in pavement construction [3], encompassing
epoxy asphalt, epoxy mixture concrete, epoxy adhesives, and coatings [4]. Among these,
EP belong to one of the most versatile groups of thermosetting polymers, formed by the
reaction of epoxy ring functional groups with curing agents [5]. Upon curing, EP forms
a dense, cross-linked network structure in a three-dimensional space, with the asphalt
phase filling this network structure [6–8]. The combination of thermoplastic asphalt with a
thermosetting EP not only reduces the brittleness of the EP but also alters the thermoplastic
nature of asphalt [9], resulting in the exceptional performance of EA. In comparison to
ordinary asphalt mixture materials, epoxy asphalt mixture (EAM) demonstrates enhanced
thermal stability, mechanical properties, adhesive properties, corrosion resistance, and
chemical resistance [10–13]. Test results of EAM show significant improvements, with most
property metrics being at least 2 to 3 times better and sometimes even more than 10 times
better than those of unmodified asphalt mixture [14].
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However, the use of epoxy materials in pavement construction can substantially
increase initial construction costs [15]. Additionally, the modification of mixing plants to
produce EAM incurs additional expenses for the asphalt industry. Nonetheless, due to
the outstanding performance of EAM, it is considered a promising material for long-life
pavements [8,16]. Several studies have indicated that porous EAM have a life expectancy
of approximately 40 years or more [17,18]. Constructing long-life pavements reduces
maintenance and rehabilitation costs. Furthermore, in the case of dense-graded EAM,
the layer thickness can be reduced by 50–60% while still achieving the same structural
functions as those of conventional asphalt mixtures [19]. Consequently, EAM pavements
can lower construction costs by reducing the layer thickness. However, there is currently
a lack of effective life cycle cost analyses (LCCA) for EAM to demonstrate its economic
advantages [20].

The incorporation of reclaimed asphalt pavement (RAP) into EAM presents a promis-
ing strategy for reducing the costs of pavement construction and rehabilitation. This
approach offers potential cost savings by decreasing the expenses and environmental emis-
sions associated with the extraction, processing, and transportation of raw asphalt and
aggregate materials [21–24]. In the case of ordinary hot-mix asphalt mixture, the use of 100%
RAP has the potential to reduce pavement construction costs by 50–70% [25]. The complete
utilization of RAP material, with 100% RAP content, in asphalt pavement materials could
lead to savings of 18 kg of carbon dioxide emissions per tonne of mixture [25]. Within
carbon emission trading systems, reducing carbon emissions translates to cost savings,
as enterprises or organizations can generate economic benefits by selling saved carbon
emission quotas [26]. Moreover, the use of RAP helps to diminish the volume of material
deposited in landfills [27], thereby reducing the disposal costs associated with construction
projects. Consequently, the use of reclaimed materials holds significant importance in
reducing the overall cost of EAM pavements.

A major concern regarding the utilization of a high proportion of RAP in asphalt
mixtures is the insufficient effectiveness of blending and diffusion between the RAP binder
mastic and additives, potentially resulting in uneven field performance [28]. Furthermore,
the occurrence of particle agglomerations, particularly of smaller-sized RAP particles, has
been often observed [28–30]. These agglomerations hinder the contact between smaller-
sized RAP particles and EP additives, leading to increased aggregate heterogeneity of
the mixtures and a reduced degree of blending between the RAP binder mastic and ad-
ditives [31]. Yi et al. [32] incorporated an EP into 100% RAP and found that the ERAM
exhibited noticeably inferior fatigue performance compared to the EAM. They attributed
the poorer performance to the low mixing temperature affecting the homogeneity of the
mixture. Due to the fact that the preheating temperature of the RAP is lower than the
final mixing temperature of the mixture, an ERAM with a higher RAP content may face
challenges in reaching the designated mixing temperature within a short mixing duration
of the final mixing process. This may cause insufficient mutual diffusion between the epoxy
resin and the aged asphalt binder in the RAP. The uncured EP was shown to be unable to
adequately penetrate the agglomerates of smaller-sized RAP particles.

The homogeneity of asphalt mixtures containing RAP can be assessed at three different
scales: the microscale, the mesoscale, and the macroscale [33]. The microscale homogene-
ity primarily pertains to the diffusion of the RAP binder mastic and the additives. The
mesoscale homogeneity is associated with the distribution of the aggregate. Finally, the
macroscale homogeneity is related to the paving and compaction processes. These three
scales describe the homogeneity of the asphalt mastic, aggregate, and air voids within
the mixture. An optimized mixing procedure for producing an ERAM can enhance the
homogeneity at the micro- and meso-scales. Therefore, to improve the performance of the
ERAM with 100% RAP and promote the application of RAP in EP-containing pavement
materials, this study focuses on enhancing the homogeneity of the material at the asphalt
mastic and aggregate levels. At the microscale, the impact of altering the mixing tem-
perature on the diffusion between the EP and the aged asphalt mastic was characterized
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using a nanoindentation test. At the mesoscale, the effect of adjusting the gradation of the
RAP on the distribution of aggregates in the ERAM was investigated using computerized
tomography (CT) X-ray scanning. A MATLAB analysis of the internal structure images of
the mixture was conducted, along with calculations of homogeneity indices. The findings
provide insights into the ERAM production process.

2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Mastic

The virgin asphalt used in this study was a 60/80 asphalt produced by Jiangsu Alpha
(Jiangyin) Asphalt Co. To prepare artificially aged asphalt, standard Rolling Thin Film Oven
Test (RTFOT) aging and Pressure Aging Vessel (PAV) aging were conducted according to
AASHTO T240 and AASHTO R28, respectively. The instruments are produced by Prentex,
Dallas, TX, USA. The basic properties of virgin asphalt and artificially aged asphalt are
shown in Table 1. After calculating the content of mineral filler and aged asphalt in the
RAP, the artificially aged asphalt was mixed with mineral filler at a ratio of 1:1 to prepare
the aged asphalt mastic.

Table 1. Basic properties of virgin asphalt and aged asphalt.

Materials

Properties

Penetration
(0.1 mm)

Softening Point
(◦C)

Ductility
(cm, 15 ◦C)

Viscosity
(Pa·s, 135 ◦C)

Performance
Grade

Virgin asphalt 71 47.5 160.1 0.6 PG 64–22
Aged asphalt 23 66.5 5.2 1.83 PG 88–16

2.1.2. Epoxy Resins and Curing Agent

The bisphenol A epoxy resin and amine curing agent used in this study were produced
by a Japanese Taiyu Construction Co., Ltd. (Neyagawa City, Japan). For the uncured EP,
the epoxy resin to curing agent ratio was 56:44. After curing in an oven, the tensile strength
and elongation of the EP were tested. The technical specifications of the epoxy resin and
curing agent are shown in Table 2.

Table 2. Basic properties of epoxy resin and curing agent.

Items Materials Values

Density (g/cm3)
Epoxy resin (before curing) 1.118

Curing agent (before curing) 0.852

Viscosity(cps, 25 ◦C) Epoxy resin (before curing) 2.118
Curing agent (before curing) 0.242

Tensile strength (MPa) Epoxy resin components after curing 1.65
Elongation (%) 191

2.1.3. RAP

The performance grade of the aged asphalt binder extracted from raw RAP was PG
88-16. The raw RAP contained an average asphalt content of 5%. Notably, the raw RAP
consisted of a substantial amount of fine aggregate; its gradation is presented in Figure 1.
The gradation of raw RAP is adjusted based on the gradation median of AC-13. To modify
the gradation of the RAP, a 4.75 mm sieve was employed to separate raw RAP into two
gradations: RAP particles smaller than 4.75 mm (RAP < 4.75 mm) and RAP particles
larger than 4.75 mm (RAP > 4.75 mm). After calculation, an adjusted RAP was created by
combining 25% of the RAP < 4.75 mm and 75% of the RAP > 4.75 mm. The gradation of
adjusted RAP is also presented in Figure 1. The gradation of adjusted RAP is very close to
the gradation median of AC-13.
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Figure 1. The gradation of RAP and adjusted RAP.

2.2. Methods
2.2.1. Preparation of Nano-Indentation Test Samples

In this study, a newly developed test was used to simulate the mixing of EP and RAP
asphalt mastic. A custom-made mold was utilized to facilitate the diffusion of EP and
asphalt mastic. The mold is depicted in Figure 2a. Melted artificially aged asphalt mastic
was poured into one side of the mold, as shown in Figure 2b,c. After allowing it to cool, the
uncured EP was poured into the other side, ensuring that the heights on both sides were
level. The diffusion of the two components was achieved by heating the mold in an oven
at the experimental temperature for 10 min to simulate the mixing temperature of ERAM.
Finally, the samples were cured by placing them in an oven at 60 ◦C for four days. The
cured sample is illustrated in Figure 2d. The dimensions of the cured sample were 20 mm
along the side length and 2 mm in thickness.
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In order to prevent the asphalt in the RAP from re-aging during the recycling mixing
process, a final mixing temperature of 160 ◦C was used, as in previous research [32]. Since
RAP was only preheated at 120 ◦C, when 100% RAP was added to the mixing machine,
the actual final mixing temperature was less than 160 ◦C. This was because the mixing
time for RAP and EP was only 90 s. Although the mixing machine was set to a target
final mixing temperature of 160 ◦C, the actual mix temperature may have been slightly
lower due to the fact that the RAP temperature was only 120 ◦C. This may have limited
the modification effect of the epoxy polymer to a certain extent. Therefore, increasing the
mixing temperature may positively affect the performance of the epoxy reclaimed mixture.
The epoxy polymer (EP) used in this study was a high-temperature mixing epoxy resin
material. In the case of the virgin epoxy asphalt mixture without any RAP, the typical
mixing temperature ranges from 170 ◦C to 190 ◦C [34]. Therefore, the selected temperature
for the diffusion process was 180 ◦C. Meanwhile, 160 ◦C was also used as a control group.

2.2.2. Nanoindentation Test

Nanoindentation is an innovative technique for testing the micro-mechanical proper-
ties of materials. It involves conducting indentation tests with a nanoscale indenter and
extracting the sample’s micro-mechanical properties using relevant mechanical models.
This technique enables accurate measurements to be made of the fundamental mechan-
ical properties of different phases within heterogeneous mixtures using small sample
volumes [35]. At the microscale, the indenter probes the smooth surface of the sample,
and the load and depth during indentation are recorded, resulting in a load–depth curve.
Subsequently, various computational models are employed to analyze the experimental
curve and extract parameters such as hardness and modulus. The test consists of three
stages: the loading stage, the holding stage, and the unloading stage. The holding stage
refers to the phase where the load remains constant while the indentation depth increases.

Nanoindentation testing was conducted to assess the mechanical properties of the
diffusion between the EP and the aged asphalt mastic. The study employed a System 1
nanoindenter produced by Micro Materials, USA. A Berkovich indenter was used with
the parameters specified in Table 3. The maximum load was set to 0.1 mN, with a load-
ing/unloading rate of 0.01 mN/s and a holding time of 200 s.

Table 3. Berkovich indenter specifications.

Probe Type
Half-Open

Angle
(◦)

Effective Cone
Angle

(◦)

Geometric
Correction

Factor

Young’s
Modulus

(GPa)

Poisson
Ratio

Berkovich 65.27 70.3 1.034 1141 0.07

For each asphalt mastic sample, 20 measurement points were set along two lines
perpendicular to the interface between the EP and asphalt mastic, as shown in Figure 3.
Ten measurement points were evenly distributed along each line, with a spacing of 500 µm.
The measurement points were numbered from 1 to 10 in a line. The measurement points
on the other line were repeated. The data measured at the position with the same point
number on each line were averaged. Due to the distinct color difference between the EP
and asphalt mastic parts, the boundary between the amber and black regions of the sample
could be identified under a microscope. A displacement of approximately 500 µm from the
boundary toward the EP part was used to determine the starting position of measurement
point 1, ensuring that it was located within the EP phase. Nanoindentation tests were
performed on EP-mastic samples prepared at two temperatures. The microscale modulus
was extracted from the indentation tests, and the extent of diffusion between the asphalt EP
and aged asphalt mastic was evaluated by examining the variation in the elastic modulus
along the line of measurement points.
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2.2.3. Preparation of ERAM Mixture Samples

In this study, ERAM was prepared using both raw RAP and adjusted RAP. Initially,
the RAPs were dried in an oven at 120 ◦C for 2 h. Subsequently, uncured EP was added to
the mixing machine with a mass ratio of 3:7 between EP and aged asphalt binder, based on
a previous study [36]. The RAPs were then introduced into the machine and mixed. The
resulting mixture was placed into the mold (of 150 diameter and 160 depth) and compacted
using a gyratory compactor. Based on previous experience [32], the compaction process
was repeated until the void content has been determined to be 2%. After compaction, the
specimens were transferred to an oven and heated at 60 ◦C for 4 days to facilitate curing.
Finally, cylindrical specimens, each with a diameter of 70 mm and a height of 160 mm,
were obtained by coring the compacted specimens along the central portions, as shown in
Figure 4.
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Asphalt in the mixture used in pavement construction undergoes short-term aging
during the mixing, transportation, and paving processes. This aging leads to an increase
in the viscosity of the asphalt, which hinders the relative sliding between particles in the
mixture and consequently affects its homogeneity. To simulate the effect of short-term
aging on the mixture, a portion of the uncompacted mixture was subjected to ventilation
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and heating for 4 h at 135 ◦C in an oven. The labels of the mixture samples are shown in
Table 4, wherein three replicate specimens were prepared for each asphalt mixture.

Table 4. Labels of mixture samples.

Gradation Aging Degree ERAM Labels

Raw RAP
Original ROM

Shot-term aging RAM

Adjusted RAP Original AOM
Shot-term aging AAM

2.2.4. X-ray Computerized Tomography (CT) Test and Analysis

CT scanning technology is a non-destructive technique for the acquisition of internal
structural information about asphalt mixtures. To this end, it exploits the different X-ray
absorption capabilities of various constituent materials within the mixture. This technique
is suitable for analyzing the distribution and homogeneity of coarse and fine aggregate,
as well as air voids within the asphalt mixture along both the horizontal and vertical
directions [37]. Since the grayscale values in the original CT images are related to the
material density, it is relatively easy to differentiate between the void phase (appearing as
black), the aggregate phase (appearing as lighter shades), and the asphalt mastic phase
(appearing as darker shades). MATLAB programs were adopted to process the original CT
images, thereby extracting spatial distribution information for each constituent material
and quantitatively calculating spatial indices to evaluate the homogeneity of the mixture.

A longitudinal cross-section was taken along the cylindrical specimens at intervals
of 1 cm, resulting in a total of 15 cross-sections, labeled as Ci(iε[1, 15], iεZ), as shown in
Figure 5. In this study, a German YXLON X-ray CT scanner was employed to perform CT
scans on different cross-sections of the ERAM specimens. The obtained CT images were
divided into equal-area annular and circular regions. Each annular region was further
divided into four equal quadrants based on the coordinate axes, resulting in distinct regions
named Sjj(jε[1, 4], jεZ), as illustrated in Figure 6. The areas of each region were identical.
MATLAB was used to process the internal structure images of the asphalt mixture, as
shown in Figure 7. Subsequently, the areas of coarse aggregate (particle size > 4.75 mm),
fine aggregate (particle size < 4.75 mm), and air voids were determined within each region
Sjj, and the homogeneity indices of each constituent were calculated. The study compared
the homogeneity of the mixture from both the horizontal and vertical perspectives.
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To assess horizontal homogeneity, the areas of coarse aggregate, fine aggregate, and
voids within each region Sjj(jε(1, 4), jεZ) in a single cross-section were calculated. Subse-
quently, the coefficient of variation, DH , was determined for each constituent in different
regions Sjj(jε[1, 4], jεZ). The mean coefficient of variation, DH , for the 15 cross-sections
was computed by averaging the individual coefficients of variation, DHk(kε[1, 15], kεZ),
using Equation (1):

DH =
∑ DHk

15
(kε(1, 15), kεZ) (1)

where DH serves as an indicator of the horizontal (cross-sectional) homogeneity.
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For instance, in the case of cross-section C1, the coefficients of variation for areas
of coarse aggregate, fine aggregate, and air voids, denoted as DH1, were first calculated
as presented in Table 5. Subsequently, coefficients of variation, DHk(kε(1, 15), kεZ), and
their mean value, DH , were computed across all the cross-sections Ci(iε(1, 15), iεZ) of the
specimen, as shown in Table 6.

Table 5. Calculation process for DH1.

Regions
Area (mm2)

Coarse Aggregate
Phase

Fine Aggregate
Phase

Air Void
Phase

S11 712.32 21.82 5.36
S12 672.45 8.84 4.28
S13 730.82 4.57 3.91
S14 744.58 8.13 1.96
S21 463.55 48.16 12.02
S22 415.39 69.05 6.50
S23 347.70 102.32 8.05
S24 382.89 110.11 3.13
S31 543.78 71.38 7.64
S32 626.09 30.76 1.94
S33 366.32 77.63 22.70
S34 579.56 41.55 2.97
S41 560.15 64.47 4.39
S42 460.97 49.62 2.09
S43 341.28 36.68 23.94
S44 483.88 102.07 2.05

Standard deviation 135.62 33.21 6.70
Average value 526.98 52.95 7.06
Coefficient of
variation DH1

0.26 0.63 0.95

Table 6. Calculation process for DH .

Coefficient of
Variation

Coarse Aggregate
Phase

Fine Aggregate
Phase

Air Void
Phase

DH1 0.26 0.63 0.95
DH2 0.24 0.44 1.06
DH3 0.3 0.61 1.10
DH4 0.34 0.63 1.06
DH5 0.36 0.67 1.06
DH6 0.39 0.59 1.01
DH7 0.33 0.55 1.04
DH8 0.37 0.54 1.06
DH9 0.4 0.62 0.96
DH10 0.41 0.55 0.99
DH11 0.38 0.45 1.00
DH12 0.40 0.65 0.94
DH13 0.38 0.49 1.04
DH14 0.41 0.53 1.04
DH15 0.39 0.62 0.97

Mean value DH 0.36 0.57 1.01

For vertical homogeneity, the areas of coarse aggregate, fine aggregate, and air void
phases were computed for each cross-section. The coefficient of variation, DV, calculated
from the variations across the 15 cross-sections, served as an indicator to assess the degree of
vertical distribution segregation. Additionally, the variations of DHk(kε[1, 15], kεZ) along
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the vertical direction were analyzed to examine the vertical distribution of each phase
in ERAM.

3. Results and Discussion
3.1. Homogeneity of Asphalt Mastic

Nanoindentation tests were performed on samples prepared at two diffusion tem-
peratures; the load–depth curves are shown in Figure 8. It can be observed that for both
samples, the maximum indentation depth was smallest at measurement point 1. This
indicates that pure EP exhibited a high resistance to deformation. As the measurement
points gradually approached the asphalt mastic part from the EP part, the resistance to
deformation of the samples showed a decreasing trend, followed by an increasing trend. In
Figure 8a, measurement point 5 exhibited the greatest maximum indentation depth, while
in Figure 8b, measurement point 3 showed the highest maximum indentation depth. These
findings suggest that the mechanical properties of EP and aged asphalt mastic underwent
changes upon their mutual diffusion. Prior to measurement point 5 for the sample with a
diffusion temperature of 160 ◦C and measurement point 3 for the sample with a diffusion
temperature of 180 ◦C, both samples exhibited a decrease in resistance to deformation.
After these measurement points, the maximum indentation depth gradually increased as
the measurement point number increased up to measurement point 10. The indentation
depth at measurement point 10 was significantly higher than that of measurement point 1.
This indicates that an increase in aged asphalt mastic concentration led to a reduction in
the resistance to deformation of the samples to some extent.
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Notably, measurement points 1 and 10 in the sample with 180 ◦C diffusion temperature
exhibited smaller maximum indentation depths compared to the remaining measurement
points. Similarly, in the sample with a diffusion temperature of 160 ◦C, measurement points
1 and 10 exhibited smaller maximum indentation depths than measurement points 4–9. In
other words, the mechanical properties of the blending zone did not fall between those of
EP and asphalt. This suggests that the diffusion between EP and asphalt mastic was not
a simple blending, and the irregular network structure formed by partially diffused EP
significantly affected the mechanical properties of the samples. In addition, the maximum
indentation depth differed between the two samples, with the 160-◦C sample having a maxi-
mum indentation depth of less than 8000 nm, while the 180-◦C sample approached 9000 nm.
This indicates that the diffusion temperature between EP and asphalt mastic affected the
distribution of EP, thereby significantly influencing the material’s mechanical properties.

Based on the load–depth curves obtained from different measurement points, the elas-
tic modulus E of the two samples was calculated, as shown in Figure 9. It can be observed
that there were significant modulus variations at different measurement points, indicating
a micro-mechanical property transition in the diffusion region between the EP and asphalt
mastic. Both samples exhibited a decreasing trend in E for the initial measurement points,
followed by an increase. Several nanoindentation tests were conducted on pure asphalt
mastic samples, and the E of pure asphalt mastic samples was calculated based on load–
unload curves. The average E of the pure asphalt mastic was measured to be 0.03916 GPa
with a coefficient of variation of 6.8%. By comparing this average modulus with the two
curves in Figure 9, it can be observed that the 160-◦C sample reached this modulus level
at measurement point 9, while the 180-◦C sample approached this level at measurement
point 10. The measurement point 1 for both samples was at the same distance from the
EP-mastic boundary. This indicates that increasing the fusion temperature to 180 ◦C results
in a wider diffusion region. At 180 ◦C, the diffusion between the EP and asphalt mastic
was more thorough. This means that mixing RAP and EP at 180 ◦C will result in a better
homogeneity of the binder mastic in ERAM. By enhancing diffusion, the viscosity of asphalt
in the agglomerations may be reduced, thereby increasing the possibility of dispersion in
the agglomerations.
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3.2. Homogeneity of Aggregate
3.2.1. Horizontal Homogeneity of Aggregate

The CT images of the four types of mixture specimens were processed, and the mean
value DH of the DH for all 15 cross-sections of the parallel specimens was calculated,
as shown in Figure 10. It can be observed that the mean coefficient of variation DH for
coarse aggregate was smaller than that of fine aggregate. This indicates that the skeletal
structure of coarse aggregate was distributed in a more homogeneous manner, while the
fine aggregate exhibited poorer homogeneity due to agglomeration. The DH for air voids
was the highest, indicating the highly uneven dispersion within the cross-sections. This
could be attributed to the relatively low overall void content of the specimens and the
small area of the divided regions, which resulted in fewer voids in certain divided areas,
thereby increasing the variability in the size of air voids between different regions. The
average variation coefficients, DH , for coarse aggregate, fine aggregate, and air voids in
the adjusted RAP were all smaller than those in the raw RAP. This indicates that the use of
adjusted RAP effectively reduced the horizontal distribution variability of coarse aggregate,
fine aggregate, and air voids in ERAM.
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Short-term aging increased the horizontal distribution variability of coarse aggregate,
fine aggregate, and air voids in ERAM, with the most significant impact observed on the
distribution of air voids. This indicates that during the short-term aging process, a certain
degree of EP curing occurred, while the aged asphalt in the RAP underwent a certain
level of re-aging, leading to a noticeable increase in the viscosity of the binder in ERAM.
This reduced the inter-particle sliding in the RAP and affected the compaction of ERAM,
resulting in the increased disparity of air voids.

3.2.2. Vertical Homogeneity of Aggregate

The areas of coarse aggregate, fine aggregate, and air voids were calculated from the
CT images of the 15 cross-sections, and the vertical coefficient of variation DV for each
phase was determined, as shown in Figure 11. It can be observed that compared to DH ,
the DV was relatively small, indicating a relatively homogeneous overall dispersion of
ERAM in the vertical direction. The DV for the coarse aggregate was larger than that for the
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fine aggregate phase. This may be attributed to the discontinuity of the coarse aggregate
skeletal structure in the mixture, resulting from its segmentation by the fine aggregate.
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Adjusting the gradation of RAP can effectively reduce the DV of the fine aggregate
in the mixture while having a minimal impact on the DV of the coarse aggregate. This
is because, in adjusted RAP, there was a higher proportion of coarse aggregate and a
lower proportion of fine aggregate, thereby reducing the phenomenon of fine aggregate
accumulation at the bottom of the specimen. Additionally, the abundant coarse aggregate
skeletal structure restricted the downward movement of some fine aggregate, resulting in
less pronounced vertical segregation between coarse and fine aggregates.

After short-term aging, there was a certain degree of increase in DV for the coarse
aggregate phase, fine aggregate phase, and air void phase. The influence of short-term
aging on the DV of the fine aggregate in all ERAM mixtures was not significant, suggesting
that the agglomeration of the fine aggregate may have already occurred during the mixing
process. For the AAM and AOM, the DV for each phase was smaller compared to the
RAM and ROM, respectively. Furthermore, the differences in DV between AAM and AOM
were smaller compared to RAM and ROM. This indicates that adjusting the gradation can
effectively improve the vertical homogeneity of ERAM and reduce the adverse effects of
short-term aging on its homogeneity.

The DH values for each cross-section are exhibited in Figure 12, where a trend line is
added. Realisations represent original mixtures and dashed lines represent short-term aged
mixtures. It can be observed that for the fine aggregate, coarse aggregate, and air voids, the
vertical variations of DH in each cross-section of AAM and AOM were smaller compared
to RAM and ROM. This indicates that adjusting the gradation was beneficial to optimizing
the vertical distribution homogeneity of fine aggregate, coarse aggregate, and air voids in
ERAM. Additionally, the distance between the DH trend lines of the three phases in AAM
and AOM was significantly lower than that in RAM and ROM. This indicates that adjusting
the RAP gradation was also advantageous in reducing the impact of short-term aging on
the vertical distribution homogeneity of ERAM.
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It is noteworthy that the DH curves for coarse aggregate exhibited an increasing trend,
while the DH curves for fine aggregate showed a decreasing trend among the four mixtures.
This suggests that the vertical distribution homogeneity of coarse aggregate was poorer at
the bottom of the specimen, while the vertical distribution homogeneity of fine aggregate
was poorer at the top. This implies that fine aggregate accumulated at the bottom of the
specimen, leading to a certain degree of segregation between coarse and fine aggregates.

4. Conclusions

To promote the application of RAP in ERAM and provide a reference for the production
process of ERAM, this study focused on improving the homogeneity at both the asphalt
mastic and aggregate levels. At the microscale, the diffusion between EP and aged asphalt
mastic was characterized using nanoindentation tests. At the mesoscale, computerized
tomography (CT) X-ray scanning and MATLAB analysis were employed to investigate
the aggregate distribution in ERAM. The following conclusions can be drawn from the
data analyses:

The mixing temperature influenced the diffusion between EP and asphalt mastic as
well as the distribution of EP, significantly impacting the mechanical properties of the
material. Compared to heating at 160 ◦C, a wider blending zone between the EP and
asphalt mastic appeared when heating at 180 ◦C.

The use of adjusted RAP effectively reduced the horizontal distribution variability
of coarse aggregate, fine aggregate, and air voids in ERAM. The overall dispersion of
the aggregate in the ERAM was more homogeneous in the vertical direction than in the
horizontal direction. Adjusting the RAP gradation improved the vertical distribution
homogeneity of the fine aggregate in ERAM, while it had little influence on the vertical
distribution homogeneity of the coarse aggregate.

Short-term aging increased the distribution variability of the coarse aggregate, fine
aggregate phase, and air voids in ERAM, with the most pronounced impact being observed
on the distribution of air voids. Adjusting the gradation was found to be effective at
mitigating the adverse effects of short-term aging on vertical distribution homogeneity.
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