Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtention of Pear Juice and Purees
2.3. Determination of Pear Juice Carbohydrate Composition
2.4. Preparation of Films
2.5. Characterization of Films
2.5.1. Color
2.5.2. Transparency
2.5.3. Moisture Content
2.5.4. Water Solubility
2.5.5. Wettability (Contact Angle)
2.5.6. Swelling Degree
2.5.7. Water Vapor Permeability
2.5.8. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5.9. Mechanical Properties
2.5.10. Total Polyphenol Content and Antioxidant Activity
2.5.11. Statistical Analysis
3. Results and Discussion
3.1. Study of the Carbohydrate Composition of Juice from Pears with Different Degrees of Ripeness
3.2. Effect of the Carbohydrate Composition of Pear Juice and the Addition of Pregelatinized Starch on the Handling and Mechanical Properties of Edible Films
3.3. Effect of Pear Juice Concentration on the Transparency and Color Attributes of Edible Films
3.4. Optical Properties, Moisture Content, Water Solubility, Contact Angle, Swelling, and Water Vapor Permeability of the Films
3.5. FTIR Spectra of the Films
3.6. Total Polyphenol Content and Antioxidant Properties of the Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etxabide, A.; Coma, V.; Guerrero, P.; Gardrat, C.; de La Caba, K. Effect of Cross-Linking in Surface Properties and Antioxidant Activity of Gelatin Films Incorporated with a Curcumin Derivative. Food Hydrocoll. 2017, 66, 168–175. [Google Scholar] [CrossRef]
- Singh, A.; Gu, Y.; Castellarin, S.D.; Kitts, D.D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods 2020, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Biswas, D.; Roy, S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef]
- da Silva Simão, R.; de Moraes, J.O.; Carciofi, B.A.M.; Laurindo, J.B. Recent Advances in the Production of Fruit Leathers. Food Eng. Rev. 2020, 12, 68–82. [Google Scholar] [CrossRef]
- Viana, R.M.; Sá, N.M.S.M.; Barros, M.O.; de Fátima Borges, M.; Azeredo, H.M.C. Nanofibrillated Bacterial Cellulose and Pectin Edible Films Added with Fruit Purees. Carbohydr. Polym. 2018, 196, 27–32. [Google Scholar] [CrossRef]
- de Oliveira, E.F.R.; Bonfim, K.S.; Aouada, F.A.; de Azeredo, H.M.C.; de Moura, M.R. A Sustainable Approach on the Potential Use of Kale Puree in Edible Wraps. Appl. Food Res. 2023, 3, 100261. [Google Scholar] [CrossRef]
- Matheus, J.R.V.; Miyahira, R.F.; Fai, A.E.C. Biodegradable Films Based on Fruit Puree: A Brief Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Banerjee, A.; Saurabh, C.K.; Tye, Y.Y.; Suriani, A.B.; Mohamed, A.; Karim, A.A.; Rizal, S.; Paridah, M.T. Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties. Food Eng. Rev. 2018, 10, 139–153. [Google Scholar] [CrossRef]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.P.; Otoni, C.G. Antioxidant Active Packaging Based on Papaya Edible Films Incorporated with Moringa Oleifera and Ascorbic Acid for Food Preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- Fruit Winders Doubles Strawberry & Blackcurrant. Available online: https://www.kelloggs.ie/en_IE/products/strawberry-blackcurrant-screamin-fruit-winders-product.html (accessed on 10 October 2023).
- Fruit Snacks Make These Cute Holiday Chile Peppers Easy, Even for Young Kids. Available online: https://www.bettycrocker.com/recipes/fruit-roll-ups-chile-peppers/b3fc77fa-65fc-452c-84ac-8269c93bc464 (accessed on 10 October 2023).
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Polysaccharides, Protein and Lipid-Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- World Pear Production by Country. Available online: https://www.atlasbig.com/en-gb/countries-by-pear-production (accessed on 14 August 2023).
- Alimentos Argentinos. Available online: https://alimentosargentinos.magyp.gob.ar/contenido/revista/ediciones/41/cadenas_ingles/Frutas_Pear_apple.htm (accessed on 14 August 2023).
- Kolniak-Ostek, J. Chemical Composition and Antioxidant Capacity of Different Anatomical Parts of Pear (Pyrus Communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Blanckenberg, A.; Fawole, O.A.; Opara, U.L. Postharvest Losses in Quantity and Quality of Pear (Cv. Packham’s Triumph) along the Supply Chain and Associated Economic, Environmental and Resource Impacts. Sustainability 2022, 14, 603. [Google Scholar] [CrossRef]
- McHugh, T.H.; Huxsoll, C.C.; Krochta, J.M. Permeability Properties of Fruit Puree Edible Films. J. Food Sci. 1996, 61, 88–91. [Google Scholar] [CrossRef]
- Thomas, D.J.; Atwell, W.A. Starches; Eagan Press Handbook Series; Eagan Press: St. Paul, MN, USA, 1999. [Google Scholar]
- Susmitha, A.; Sasikumar, K.; Rajan, D.; Nampoothiri, K.M. Development and Characterization of Corn Starch-Gelatin Based Edible Films Incorporated with Mango and Pineapple for Active Packaging. Food Biosci. 2021, 41, 100977. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Liu, H.; Li, M.; Ma, Z. Barrier and Mechanical Properties of Carrot Puree Films. Food Bioprod. Process. 2011, 89, 149–156. [Google Scholar] [CrossRef]
- Dalle Mulle Santos, C.; Pagno, C.H.; Haas Costa, T.M.; Jung Luvizetto Faccin, D.; Hickmann Flôres, S.; Medeiros Cardozo, N.S. Biobased Polymer Films from Avocado Oil Extraction Residue: Production and Characterization. J. Appl. Polym. Sci. 2016, 133, 43957. [Google Scholar] [CrossRef]
- Luchese, C.L.; Garrido, T.; Spada, J.C.; Tessaro, I.C.; de la Caba, K. Development and Characterization of Cassava Starch Films Incorporated with Blueberry Pomace. Int. J. Biol. Macromol. 2018, 106, 834–839. [Google Scholar] [CrossRef]
- Tulamandi, S.; Rangarajan, V.; Rizvi, S.S.H.; Singhal, R.S.; Chattopadhyay, S.K.; Saha, N.C. A Biodegradable and Edible Packaging Film Based on Papaya Puree, Gelatin, and Defatted Soy Protein. Food Packag. Shelf Life 2016, 10, 60–71. [Google Scholar] [CrossRef]
- Souza, C.O.; Silva, L.T.; Silva, J.R.; López, J.A.; Veiga-Santos, P.; Druzian, J.I. Mango and Acerola Pulps as Antioxidant Additives in Cassava Starch Bio-Based Film. J. Agric. Food Chem. 2011, 59, 2248–2254. [Google Scholar] [CrossRef]
- Reis, L.C.B.; de Souza, C.O.; da Silva, J.B.A.; Martins, A.C.; Nunes, I.L.; Druzian, J.I. Active Biocomposites of Cassava Starch: The Effect of Yerba Mate Extract and Mango Pulp as Antioxidant Additives on the Properties and the Stability of a Packaged Product. Food Bioprod. Process. 2015, 94, 382–391. [Google Scholar] [CrossRef]
- BeMiller, J.N. Starch| Modified Starches. In Encyclopedia of Food Sciences and Nutrition; Academic Press: West Lafayete, IN, USA, 2003; pp. 5576–5579. [Google Scholar] [CrossRef]
- Vigliano, S.N.; Valencia, M.V.T.; Villada, Y.; Barella, M.; Schiapparello, M.A.; Cortez, F.; Estenoz, D.; Goyanes, S.; Foresti, M.L. Espesantes En Frío En Base a Almidones Solubles En Agua; Workshop Polimeros y Nanomateriales para la Industria Energética: Berisso, Argentina, 2022. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ahmed, A.E.R.; Labavitch, J.M. A Simplified Method for Accurate Determination of Cell Wall Uronide Content. J. Food Biochem. 1978, 1, 361–365. [Google Scholar] [CrossRef]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of Uronic Acids without Interference from Neutral Sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Morrison, I.M. Hydrolysis of Plant Cell Walls with Trifluoroacetic Acid. Phytochemistry 1988, 27, 1097–1100. [Google Scholar] [CrossRef]
- Stevenson, T.T.; Furneaux, R.H. Chemical Methods for the Analysis of Sulphated Galactans from Red Algae. Carbohydr. Res. 1991, 210, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.F.; de Oliveira, A.C.S.; de Oliveira Begali, D.; de Sena Neto, A.R.; Martins, M.A.; de Oliveira, J.E.; Borges, S.V.; Yoshida, M.I.; Tonoli, G.H.D.; Dias, M.V. Characterization of Cassava Starch/Soy Protein Isolate Blends Obtained by Extrusion and Thermocompression. Ind. Crops Prod. 2021, 160, 113092. [Google Scholar] [CrossRef]
- ASTM E96/E96M-22; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM-D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018.
- Medina-Jaramillo, C.; Quintero-Pimiento, C.; Díaz-Díaz, D.; Goyanes, S.; López-Córdoba, A. Improvement of Andean Blueberries Postharvest Preservation Using Carvacrol/Alginate-Edible Coatings. Polymers 2020, 12, 2352. [Google Scholar] [CrossRef] [PubMed]
- Medina-Jaramillo, C.; Gomez-Delgado, E.; López-Córdoba, A. Improvement of the Ultrasound-Assisted Extraction of Polyphenols from Welsh Onion (Allium Fistulosum) Leaves Using Response Surface Methodology. Foods 2022, 11, 2425. [Google Scholar] [CrossRef]
- Brahem, M.; Renard, C.M.G.C.; Gouble, B.; Bureau, S.; Le Bourvellec, C. Characterization of Tissue Specific Differences in Cell Wall Polysaccharides of Ripe and Overripe Pear Fruit. Carbohydr. Polym. 2017, 156, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Makarova, E.N.; Patova, O.A.; Shakhmatov, E.G.; Kuznetsov, S.P.; Ovodov, Y.S. Structural Studies of the Pectic Polysaccharide from Siberian Fir (Abies Sibirica Ledeb.). Carbohydr. Polym. 2013, 92, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Estevez-Areco, S.; Macchi, C.; Guz, L.; Goyanes, S.; Somoza, A. Evolution of the Free Volume during Water Desorption in Thermoplastic Starch/Citric Acid Films: In Situ Positron Annihilation Studies. Carbohydr. Polym. 2023, 310, 120739. [Google Scholar] [CrossRef] [PubMed]
- McHugh, T.H.; Senesi, E. Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh-cut Apples. J. Food Sci. 2000, 65, 480–485. [Google Scholar] [CrossRef]
- Lorevice, M.V.; de Moura, M.R.; Mattoso, L.H.C. Nanocomposite of Papaya Puree and Chitosan Nanoparticles for Application in Packaging. Quim. Nova 2014, 37, 931–936. [Google Scholar] [CrossRef]
- Lorevice, M.V.; de Moura, M.R.; Aouada, F.A.; Mattoso, L.H.C. Development of Novel Guava Puree Films Containing Chitosan Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 2711–2717. [Google Scholar] [CrossRef] [PubMed]
- Kadzińska, J.; Janowicz, M.; Kalisz, S.; Bryś, J.; Lenart, A. An Overview of Fruit and Vegetable Edible Packaging Materials. Packag. Technol. Sci. 2019, 32, 483–495. [Google Scholar] [CrossRef]
- Jirukkakul, N. The Study of Edible Film Production from Unriped Banana Flour and Riped Banana Puree. Int. Food Res. J. 2016, 23, 95. [Google Scholar]
- Brummell, D.A. Cell Wall Disassembly in Ripening Fruit. Funct. Plant Biol. 2006, 33, 103–119. [Google Scholar] [CrossRef]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit Ripening Phenomena–an Overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef]
- Raffo, M.D.; Ponce, N.M.A.; Sozzi, G.O.; Stortz, C.A.; Vicente, A.R. Changes on the Cell Wall Composition of Tree-Ripened “Bartlett” Pears (Pyrus communis L.). Postharvest Biol. Technol. 2012, 73, 72–79. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, J.; Wang, Q.; Hu, X. Chemical Compositional Characterization of Eight Pear Cultivars Grown in China. Food Chem. 2007, 104, 268–275. [Google Scholar] [CrossRef]
- Farias, M.G.; Fakhouri, F.M.; de Carvalho, C.W.P.; Ascheri, J.L.R. Physicochemical Characterization of Edible Starch Films with Barbados Cherry (Malphigia Emarginata DC). Quim. Nova 2012, 35, 546–552. [Google Scholar] [CrossRef]
- Van Schoubroeck, S.; Chacon, L.; Reynolds, A.M.; Lavoine, N.; Hakovirta, M.; Gonzalez, R.; Van Passel, S.; Venditti, R.A. Environmental Sustainability Perception toward Obvious Recovered Waste Content in Paper-Based Packaging: An Online and in-Person Survey Best-Worst Scaling Experiment. Resour. Conserv. Recycl. 2023, 188, 106682. [Google Scholar] [CrossRef]
- Packaging World News Roundup: A Comprehensive Guide of Sustainability Best Practices and Case Studies. Sustainability . Available online: https://pmg-designer.s3.amazonaws.com/FreeDownloads/PW/PW_2022_Sustainability.pdf (accessed on 8 August 2023).
- Packaging Trends Driven by Consumer Demands. Available online: https://pmg-designer.s3.amazonaws.com/FreeDownloads/PW/2021_PW_ConsumerBehavior.pdf (accessed on 8 August 2023).
- Neog, B.; Das, J.K.; Vijayakumar, A.; Badwaik, L.S. Development and Characterization of Edible Films Made with Indian Jujube Fruit Puree and Pectin. J. Food Process Eng. 2022, 45, e13977. [Google Scholar] [CrossRef]
- Silva, K.S.; Fonseca, T.M.R.; Amado, L.R.; Mauro, M.A. Physicochemical and Microstructural Properties of Whey Protein Isolate-Based Films with Addition of Pectin. Food Packag. Shelf Life 2018, 16, 122–128. [Google Scholar] [CrossRef]
- Ribeiro, A.C.B.; Cunha, A.P.; da Silva, L.M.R.; Mattos, A.L.A.; de Brito, E.S.; de Sá Moreira de Souza Filho, M.; de Azeredo, H.M.C.; Ricardo, N.M.P.S. From Mango By-Product to Food Packaging: Pectin-Phenolic Antioxidant Films from Mango Peels. Int. J. Biol. Macromol. 2021, 193, 1138–1150. [Google Scholar] [CrossRef]
- Lin, D.; Ma, Y.; Qin, W.; Loy, D.A.; Chen, H.; Zhang, Q. The Structure, Properties and Potential Probiotic Properties of Starch-Pectin Blend: A Review. Food Hydrocoll. 2022, 129, 107644. [Google Scholar] [CrossRef]
- Dantas, E.A.; Costa, S.S.; Cruz, L.S.; Bramont, W.B.; Costa, A.S.; Padilha, F.F.; Druzian, J.I.; Machado, B.A.S. Caracterização e Avaliação Das Propriedades Antioxidantes de Filmes Biodegradáveis Incorporados Com Polpas de Frutas Tropicais. Ciência Rural 2015, 45, 142–148. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Luo, S.; Li, C.; Ye, J.; Liu, C.; Gilbert, R.G. Physicochemical and Structural Properties of Pregelatinized Starch Prepared by Improved Extrusion Cooking Technology. Carbohydr. Polym. 2017, 175, 265–272. [Google Scholar] [CrossRef]
- Freitas, J.A.M.; Mendonça, G.M.N.; Santos, L.B.; Alonso, J.D.; Mendes, J.F.; Barud, H.S.; Azeredo, H.M.C. Bacterial Cellulose/Tomato Puree Edible Films as Moisture Barrier Structures in Multicomponent Foods. Foods 2022, 11, 2336. [Google Scholar] [CrossRef]
- Du, W.; Olsen, C.W.; Avena-Bustillos, R.J.; Friedman, M.; McHugh, T.H. Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. J. Food Sci. 2011, 76, M149–M155. [Google Scholar] [CrossRef]
- Borah, P.P.; Das, P.; Badwaik, L.S. Ultrasound Treated Potato Peel and Sweet Lime Pomace Based Biopolymer Film Development. Ultrason. Sonochem. 2017, 36, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Leopold, L.F.; Leopold, N.; Diehl, H.-A.; Socaciu, C. Quantification of Carbohydrates in Fruit Juices Using FTIR Spectroscopy and Multivariate Analysis. Spectroscopy 2011, 26, 93–104. [Google Scholar] [CrossRef]
- Canteri, M.H.G.; Renard, C.M.G.C.; Le Bourvellec, C.; Bureau, S. ATR-FTIR Spectroscopy to Determine Cell Wall Composition: Application on a Large Diversity of Fruits and Vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ge, X.; Li, W.; Yang, L.; Han, L.; Yu, Q. Active-Intelligent Film Based on Pectin from Watermelon Peel Containing Beetroot Extract to Monitor the Freshness of Packaged Chilled Beef. Food Hydrocoll. 2021, 119, 106751. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the Contribution of ATR-FTIR Spectroscopy to Characterize Plant Cell Wall Polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, H.M.C.; Morrugares-Carmona, R.; Wellner, N.; Cross, K.; Bajka, B.; Waldron, K.W. Development of Pectin Films with Pomegranate Juice and Citric Acid. Food Chem. 2016, 198, 101–106. [Google Scholar] [CrossRef]
- Feng, M.; Yu, L.; Zhu, P.; Zhou, X.; Liu, H.; Yang, Y.; Zhou, J.; Gao, C.; Bao, X.; Chen, P. Development and Preparation of Active Starch Films Carrying Tea Polyphenol. Carbohydr. Polym. 2018, 196, 162–167. [Google Scholar] [CrossRef]
- Jaramillo, C.M.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and Plasticizing Effect of Yerba Mate Extract on Cassava Starch Edible Films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef]
- Lee, C.M.; Kubicki, J.D.; Fan, B.; Zhong, L.; Jarvis, M.C.; Kim, S.H. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra. J. Phys. Chem. B 2015, 119, 15138–15149. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Trindle, C.; Knee, J.L. Communication: Frequency Shifts of an Intramolecular Hydrogen Bond as a Measure of Intermolecular Hydrogen Bond Strengths. J. Chem. Phys. 2012, 137, 091101. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, T.; Burini, D.; Biczysko, M.; Barone, V. Hydrogen-Bonding Effects on Infrared Spectra from Anharmonic Computations: Uracil–Water Complexes and Uracil Dimers. J. Phys. Chem. A 2015, 119, 4224–4236. [Google Scholar] [CrossRef] [PubMed]
- Guz, L.; González-Seligra, P.; Ochoa-Yepes, O.; Estevez-Areco, S.; Famá, L.; Goyanes, S. Influence of Different Commercial Modified Cassava Starches on the Physicochemical Properties of Thermoplastic Edible Films Obtained by Flat-die Extrusion. Starch-Stärke 2021, 73, 2000167. [Google Scholar] [CrossRef]
- Slavutsky, A.M.; Bertuzzi, M.A.; Armada, M. Water Barrier Properties of Starch-Clay Nanocomposite Films. Braz. J. Food Technol. 2012, 15, 208–218. [Google Scholar] [CrossRef]
- Orsuwan, A.; Sothornvit, R. Effect of Banana and Plasticizer Types on Mechanical, Water Barrier, and Heat Sealability of Plasticized Banana-based Films. J. Food Process. Preserv. 2018, 42, e13380. [Google Scholar] [CrossRef]
- Andrade, R.M.S.; Ferreira, M.S.L.; Gonçalves, É.C.B.A. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues. J. Food Sci. 2016, 81, E412–E418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.; Cheng, M. Preparation and Characterization of Potato Starch Film with Various Size of Nano-SiO2. Polymers 2018, 10, 1172. [Google Scholar] [CrossRef]
- Thakur, N.; Chaudhary, V. Fruit Purees, Extracts and Juices: Sustainable Source of Edible Packaging. In Edible Food Packaging: Applications, Innovations and Sustainability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 175–190. [Google Scholar]
- Colaric, M.; Stampar, F.; Solar, A.; Hudina, M. Influence of Branch Bending on Sugar, Organic Acid and Phenolic Content in Fruits of ‘Williams’ Pears (Pyrus communis L.). J. Sci. Food Agric. 2006, 86, 2463–2467. [Google Scholar] [CrossRef]
- Tanrıöven, D.; Ekşi, A. Phenolic Compounds in Pear Juice from Different Cultivars. Food Chem. 2005, 93, 89–93. [Google Scholar] [CrossRef]
- Genskowsky, E.; Puente, L.A.; Pérez-Álvarez, J.A.; Fernandez-Lopez, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of Antibacterial and Antioxidant Properties of Chitosan Edible Films Incorporated with Maqui Berry (Aristotelia Chilensis). LWT-Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Chen, N.; Gao, H.; He, Q.; Zeng, W. Insight into Property, Function, and Digestion of Potato Starch Modified by Phenolic Compounds with Varying Structures. J. Food Sci. 2023, 88, 962–976. [Google Scholar] [CrossRef] [PubMed]
Degree of Ripeness of Pears | MW Fraction a | Yield b (%) | Composition of Monosaccharides (g/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rha | Ara | Xyl | Man | Gal | Glc | UA | Total | |||
unripe | Low | 85.0 | - | 9 | 5 | 1 | - | 465 | 55 | 540 |
mid-ripe | 84.2 | - | 62 | 2 | - | - | 397 | 78 | 539 | |
over-ripe | 86.7 | - | - | 15 | 4 | - | 532 | 74 | 620 | |
unripe | Medium | 8.4 | 3 | 15 | 12 | 6 | 2 | 237 | 38 | 314 |
mid-ripe | 9.3 | 1 | 13 | 6 | 5 | 2 | 158 | 32 | 217 | |
over-ripe | 9.6 | 3 | 16 | 7 | 5 | 3 | 235 | 37 | 307 | |
unripe | High | 6.6 | 5 | 96 | 9 | 7 | 30 | 30 | 383 | 560 |
mid-ripe | 6.4 | 6 | 187 | 14 | 2 | 16 | 51 | 278 | 554 | |
over-ripe | 3.8 | 18 | 324 | 16 | 5 | 33 | 39 | 189 | 624 |
Young’s Modulus (MPa) | Tensile Strength (MPa) | Strain at Break (%) | |
---|---|---|---|
Film from unripe pear juice | 0.45 ± 0.11 a | 0.34 ± 0.06 a | 98.0 ± 1.5 a |
Film from mid-ripe pear juice | 2.61 ± 0.68 b | 0.61 ± 0.07 b | 57.8 ± 3.9 b |
Film from over-ripe pear juice | 0.56 ± 0.07 a | 0.28 ± 0.04 a | 64.7 ± 5.0 b |
Film from Pear Puree, 26 wt.% | Film from Pear Juice, 26 wt.% | Film from Pear Juice, 46 wt.% | Film from Pear Juice, 71 wt.% | Film from Pear Juice, 96 wt.% | |
---|---|---|---|---|---|
L* | 70.8 ± 1.5 a | 78.0 ± 1.7 b | 72.74 ± 0.82 c | 72.0 ± 1.5 a,c | 66.6 ± 2.7 d |
a* | 6.25 ± 0.62 a | 3.70 ± 0.65 b | 6.59 ± 0.49 a | 6.97 ± 0.93 a | 11.8 ± 1.7 c |
b* | 26.7 ± 1.6 a | 19.6 ± 2.4 b | 29.37 ± 0.95 c | 31.1 ± 2.7 c | 37.9 ± 2.7 d |
Transparency | 1.6 ± 0.02 a | 4.97 ± 0.10 b | 4.86 ± 0.16 b | 4.92 ± 0.30 b | 4.89 ± 0.25 b |
Property | Film without Pregelatinized Cassava Starch | Film with 3 wt.% Pregelatinized Cassava Starch |
---|---|---|
L* | 58.6 ± 1.4 a | 72.0 ± 1.5 b |
a* | 15.94 ± 1.3 a | 6.97 ± 0.93 b |
b* | 41.67 ± 0.6 a | 31.1 ± 2.7 b |
Transparency | 4.96 ± 0.40 a | 4.92 ± 0.30 a |
Moisture content (%) | 16.9 ± 1.5 a | 17.2 ± 1.5 a |
Water solubility (%) | 87.7 ± 3.9 a | 71.80 ± 0.64 b |
Contact angle at 0 s (°) | 53.8 ± 1.3 a | 66.3 ± 2.5 b |
Contact angle at 150 s (°) | 18.7 ± 1.2 a | 49.7 ± 1.9 b |
Swelling degree | 12.94 ± 0.97 a | 6.49 ± 0.50 b |
Water vapor permeability (g m/(m2 s Pa)) | 2.1 ± 0.13 × 10−10 a | 1.7 ± 0.11 × 10−10 b |
Property | Film without Pregelatinized Cassava Starch | Film with 3 wt.% Pregelatinized Cassava Starch |
---|---|---|
Total polyphenol content (mg GAE/100 g) | 700.3 ± 3.8 a | 577 ± 23 b |
DPPH (mg Trolox equivalents/100 g) | 286 ± 20 a | 213.7 ± 5.73 b |
FRAP (mg FeSO4/100 g) | 38.07 ± 0.06 a | 28.07 ± 0.543 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintero Pimiento, C.R.; Fernández, P.V.; Ciancia, M.; López-Córdoba, A.; Goyanes, S.; Bertuzzi, M.A.; Foresti, M.L. Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness. Polymers 2023, 15, 4263. https://doi.org/10.3390/polym15214263
Quintero Pimiento CR, Fernández PV, Ciancia M, López-Córdoba A, Goyanes S, Bertuzzi MA, Foresti ML. Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness. Polymers. 2023; 15(21):4263. https://doi.org/10.3390/polym15214263
Chicago/Turabian StyleQuintero Pimiento, Carmen Rosa, Paula Virginia Fernández, Marina Ciancia, Alex López-Córdoba, Silvia Goyanes, María Alejandra Bertuzzi, and María Laura Foresti. 2023. "Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness" Polymers 15, no. 21: 4263. https://doi.org/10.3390/polym15214263
APA StyleQuintero Pimiento, C. R., Fernández, P. V., Ciancia, M., López-Córdoba, A., Goyanes, S., Bertuzzi, M. A., & Foresti, M. L. (2023). Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness. Polymers, 15(21), 4263. https://doi.org/10.3390/polym15214263