Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BNC/Fe3O4
2.2. Preparation of Multi-Component Composites PVDF/BaTiO3/BNC/Fe3O4
2.3. Characterization Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Wu, Y.; Zhao, X.; Wang, Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr. Polym. 2021, 267, 118179. [Google Scholar] [CrossRef] [PubMed]
- Mariello, M. Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Adv. 2022, 2, 64–109. [Google Scholar] [CrossRef]
- Du, M.; Cao, Y.; Qu, X.; Xue, J.; Zhang, W.; Pu, X.; Shi, B.; Li, Z. Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Adv. Mater. Technol. 2022, 7, 2101332. [Google Scholar] [CrossRef]
- Chaudhary, V.; Khanna, V.; Awan, H.T.A.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, C.Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens. Bioelectron. 2023, 220, 114847. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Cardoso, V.F.; Brito-Pereira, R.; Martins, P.; Correia, D.M.; Correia, V.; Ribeiro, C.; Martins, P.M.; Lanceros-Méndez, S. Chapter 1—Electroactive poly(vinylidene fluoride)-based materials: Recent progress, challenges, and opportunities. In Fascinating Fluoropolymers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–43. [Google Scholar]
- Gregorio, R.; Ueno, E.M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J. Mater. Sci. 1999, 34, 4489–4500. [Google Scholar] [CrossRef]
- Sencadas, V.; Gregorio Jr, R.; Lanceros-Méndez, S. α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. 2009, 48, 514–525. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Kuang, X.; Tan, D.; Wang, X. Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC Adv. 2016, 6, 109061–109066. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699–704. [Google Scholar] [CrossRef]
- Esterly, D.M.; Love, B.J. Phase transformation to β-poly(vinylidene fluoride) by m. Polym. Phys. 2004, 42, 91–97. [Google Scholar] [CrossRef]
- Pavlović, V.P.; Tošić, D.; Dojčilović, R.; Dudić, D.; Dramićanin, M.D.; Medić, M.; McPherson, M.M.; Pavlović, V.B.; Vlahovic, B.; Djoković, V. PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix. Polym. Test. 2021, 96, 107093. [Google Scholar] [CrossRef]
- Petrović, P.B.; Pavlović, V.B.; Vlahović, B.; Mijailović, V. A high-sensitive current-mode pressure/force detector based on piezoelectric polymer PVDF. Sens. Actuators A Phys. 2018, 276, 165–175. [Google Scholar] [CrossRef]
- Tadić, A.P.; Blagojević, V.A.; Stojanović, D.; Ostojić, S.B.; Tasić, N.; Kosanović, D.; Uskoković, P.; Pavlović, V.B. Nanomechanical properties of PVDF–ZnO polymer nano- composite. Mater. Sci. Eng. B 2023, 287, 116–126. [Google Scholar]
- Pavlović, V.P.; Pavlović, V.B.; Vlahović, B.; Božanić, D.K.; Pajović, J.D.; Dojčilović, R.; Djoković, V. Structural properties of composites polyvinyliden fluorid and mechani- cally activated BaTiO3 particles. Phys. Scr. 2013, 2013, 014006. [Google Scholar] [CrossRef]
- Matsuto, T.; Jung, C.H.; Tanaka, N. Material and heavy metal balance in a recycling facility for home electrical appliances. Waste Manag. 2004, 24, 425–436. [Google Scholar] [CrossRef]
- Li, L.; Wei, S.; Hu, X.; Su, R.; Zhang, D.; Wang, Z.; Yang, Y. Construction of ternary core-shell Fe3O4@BaTiO3/PVDF nanocomposites with enhanced permittivity and breakdown strength for energy storage. Mater. Chem. Phys. 2021, 265, 124505. [Google Scholar] [CrossRef]
- Niu, Y.; Bai, Y.; Yu, K.; Wang, Y.; Xiang, F.; Wang, H. Effect of the Modifier Structure on the Performance of Barium Titanate/Poly(vinyl- idene fluoride) Nanocomposites for Energy Storage Applications. ACS Appl. Mater. Interfaces 2015, 7, 24168–24176. [Google Scholar] [CrossRef]
- Mofokeng, T.G.; Luyt, A.S.; Pavlović, V.P.; Pavlović, V.B.; Dudić, D.; Vlahović, B.; Djoković, V.J. Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J. Appl. Phys. 2014, 115, 084109. [Google Scholar] [CrossRef]
- Peleš, A.; Aleksić, O.; Pavlović, V.P.; Djoković, V.; Dojčilović, R.; Nikolić, Z.; Marinković, F.; Mitrić, M.; Blagojević, V.; Vlahović, B. Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Phys. Scr. 2018, 93, 105801. [Google Scholar] [CrossRef]
- Vadanan, S.V.; Basu, A.; Lim, S. Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polym. J. 2022, 54, 481–492. [Google Scholar] [CrossRef]
- Ma, L.; Bi, Z.; Xue, Y.; Zhang, W.; Huang, Q.; Zhang, L.; Huang, Y. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 2020, 8, 5812–5842. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites–A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef] [PubMed]
- Mihranyan, A. Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. Appl. Polym. Sci. 2011, 119, 2449–2460. [Google Scholar] [CrossRef]
- Suto, M.; Tomita, F. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 2001, 92, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Huang, Y.; Meng, F.; Zhuang, Y.; Liu, H.; Du, M.; Cai, Y. Application of bacterial cellulose in skin and bone tissue engineering. Eur. Polym. J. 2020, 122, 109365. [Google Scholar] [CrossRef]
- Gorgieva, S.; Trček, J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef]
- Gregory, D.A.; Tripathi, L.; Fricker, A.T.; Asare, E.; Orlando, I.; Raghavendran, V.; Roy, I. Bacterial cellulose: A smart biomaterial with diverse applications. Mater. Sci. Eng. R Rep. 2021, 145, 100623. [Google Scholar] [CrossRef]
- Chen, S.; Brahma, S.; Mackay, J.; Cao, C.; Aliakbarian, B. The role of smart packaging system in food supply chain. J. Food Sci. 2020, 85, 517–525. [Google Scholar] [CrossRef]
- Chiang, C.K.; Popielarz, R. Polymer Composites with High Dielectric Constant. Ferroelectrics 2002, 275, 1–9. [Google Scholar] [CrossRef]
- Feng, Y.; Li, J.L.; Li, W.L.; Li, M.L.; Chi, Q.G.; Zhang, T.D.; Fei, W.D. Effect of BaTiO3 nanowire distribution on the dielectric and energy storage performance of double-layer PVDF-based composites. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105524. [Google Scholar] [CrossRef]
- Hou, D.; Zhou, J.; Chen, W.; Zhang, P.; Shen, J.; Jian, Z. Core@double-shell structured fillers for increasing dielectric constant and suppressing dielectric loss of PVDF-based composite films. Ceram. Int. 2022, 48, 22691–22698. [Google Scholar] [CrossRef]
- Lin, B.; Chen, G.D.; He, F.A.; Li, Y.; Yang, Y.; Shi, B.; Lam, K.H. Preparation of MWCNTs/PVDF composites with high-content β form crystalline of PVDF and enhanced dielectric constant by electrospinning-hot pressing method. Diam. Relat. Mater. 2023, 131, 109556. [Google Scholar] [CrossRef]
- Filipović, S.; Pavlović, V.B.; Sknepnek, A.; Kovačevič, D.; Đorđević, N.; Mirković, M.; Živković, P. Sinteza I struktura bakterijske celuloze prime- nom bakterija sirćetnog vrenja. In Savetovanje o Biotehnologiji sa Međunarodnim Učešćem; University of Kragujevac: Čačak, Serbia, 2021; p. 26. [Google Scholar]
- Huang, Z.Q.; Lu, J.P.; Li, X.H.; Tong, Z.F. Effect of mechanical activation on physico-chemical properties and structure of cassava starch. Carbohydr. Polym. 2007, 68, 128–135. [Google Scholar] [CrossRef]
- Pavlović, V.P.; Popović, D.; Krstić, J.; Dojčilović, J.; Babić, B.; Pavlović, V.B. Influence of mechanical activation on the structure of ultrafine BaTiO3 powders. J. Alloys Compd. 2009, 486, 633–639. [Google Scholar] [CrossRef]
- Filipović, S.; Obradović, N.; Pavlović, V.B.; Mitrić, M.; Đorđević, A.; Kachlik, M.; Maca, K. Effect of consolidation parameters on structural, microstructural and electrical prop- erties of magnesiumtitanate ceramics. Ceram. Int. 2016, 42, 9887–9898. [Google Scholar] [CrossRef]
- Gregorio, R., Jr. Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. Appl. Polym. Sci. 2006, 100, 3272–3279. [Google Scholar] [CrossRef]
- Mendes, S.F.; Costa, C.M.; Caparros, C.; Sencadas, V.; Lanceros-Méndez, S. Effect of Filler Size and Concentration on the Structure and Properties of Poly(Vinylidene Fluoride)/BaTiO3 Nanocomposites. J. Mater. Sci. 2012, 47, 1378–1388. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Zhou, Z.; Yang, H.; Zhang, Q. Enhanced Dielectric Performance of P(VDF-HFP) Composites with Satel- lite-Core-Structured Fe2O3@BaTiO3 Nanofillers. Polymers 2019, 11, 1541. [Google Scholar] [CrossRef]
- Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.; Zuhainis Saad, W.; Navaderi, M.; Mohamad, R. Production and Status of Bacterial Cellulose in Biomedical Engineering. Nanomaterials 2017, 7, 257. [Google Scholar] [CrossRef]
- Kosanović, D.; Obradović, N.; Pavlović, V.P.; Marković, S.; Maričić, A.; Rasić, G.; Ristić, M.M. The influence of mechanical activation on the morphological changes of Fe/BaTiO3 powder. Mater. Sci. Eng. B 2016, 212, 89–95. [Google Scholar] [CrossRef]
- Yadav, V.S.; Sahu, D.K.; Singh, Y.; Kumar, M.; Dhubkarya, D.C. Frequency and Temperature Dependence of Dielectric Properties of Pure Poly Vinylidene Fluoride (PVDF) Thin Films. AIP Conf. Proc. 2010, 1285, 267–278. [Google Scholar]
- Chanmal, C.V.; Jog, J.P. Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Polym. Sci. Eng. Div. Nat. Chem. Lab. 2008, 2, 294–301. [Google Scholar] [CrossRef]
BT0 | BT5 | BT10 | BT20 | |
---|---|---|---|---|
d(0.1) (μm) | 0.644 | 0.457 | 0.556 | 0.485 |
d(0.5) (μm) | 1.458 | 1.115 | 1.336 | 1.244 |
d(0.9) (μm) | 10.710 | 11.421 | 11.727 | 11.718 |
Span | 6.904 | 9.831 | 8.361 | 9.026 |
Sample Name | BT | BT5 | BT10 | BT20 | ||||
---|---|---|---|---|---|---|---|---|
Phase Name | Crystallite Size (Å) | Strain (%) | Crystallite Size (Å) | Strain (%) | Crystallite Size (Å) | Strain (%) | Crystallite Size (Å) | Strain (%) |
Perovskite BaTiO3 | 491 (2) | 0.000000 | 219 (9) | 0.39 (7) | 183 (9) | 0.57 (8) | 153 (7) | 0.64 (5) |
Sample Name | PVDF/BNC/Fe3O4 | PVDF/BT0/BNC/Fe3O4 | PVDF/BT5/BNC/Fe3O4 | PVDF/BT10/BNC/Fe3O4 | PVDF/BT20/BNC/Fe3O4 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Phase Name | Crystallite Size (Å) | Strai n (%) | Crystallite Size (Å) | Strain (%) | Crystallite Size Å) | Strain (%) | Crystallite Size (Å) | Strain (%) | Crystallite Size (Å) | Strain (%) |
α-PVDF | 72 (5) | 0.40 (3) | 72 (7) | 0.50 (4) | 36 (3) | 0.43 (5) | 35 (2) | 0.52 (3) | 24.7 (4) | 0.0000 |
Magnetite Fe3O4 | 85 (3) | 0.72 (2) | 87 (4) | 0.98 (3) | 75 (6) | 0.12 (4) | 63 (4) | 0.23 (4) | 25.5 (2) | 1.23 (6) |
Cellulose I-β | 77 (9) | 0.71 (4) | 68 (6) | 0.74 (5) | 42 (3) | 0.73 (6) | 41 (6) | 0.75 (5) | ||
Perovskite Ba-TiO3 | 469 (9) | 0.15 (6) | 273 (22) | 0.49 (5) | 174 (39) | 0.51 (4) | 78 (4) | 0.71 (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janićijević, A.; Filipović, S.; Sknepnek, A.; Vlahović, B.; Đorđević, N.; Kovacević, D.; Mirković, M.; Petronijević, I.; Zivković, P.; Rogan, J.; et al. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. Polymers 2023, 15, 4080. https://doi.org/10.3390/polym15204080
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Zivković P, Rogan J, et al. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. Polymers. 2023; 15(20):4080. https://doi.org/10.3390/polym15204080
Chicago/Turabian StyleJanićijević, Aleksandra, Suzana Filipović, Aleksandra Sknepnek, Branislav Vlahović, Nenad Đorđević, Danijela Kovacević, Miljana Mirković, Ivan Petronijević, Predrag Zivković, Jelena Rogan, and et al. 2023. "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" Polymers 15, no. 20: 4080. https://doi.org/10.3390/polym15204080
APA StyleJanićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Zivković, P., Rogan, J., & Pavlović, V. B. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. Polymers, 15(20), 4080. https://doi.org/10.3390/polym15204080