Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials
2.2. Rubber Compounding
2.3. Characterization and Testing
3. Results and Discussion
3.1. Curing Characteristics
3.2. Dynamic Property
3.3. Mechanical Properties
3.4. Wide Angle X-Ray Scattering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, C.G.; Hardman, N.J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite. Polymers 2021, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Valvez, S.; Maceiras, A.; Santos, P.; Reis, P.N.B. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 2021, 14, 845. [Google Scholar] [CrossRef]
- El-Nemr, K.F.; Ali, M.A.; Gad, Y.H. Manifestation of the silicate filler additives and electron beam irradiation on properties of SBR/devulcanized waste tire rubber composites for floor tiles applications. Polym. Compos. 2022, 43, 366. [Google Scholar] [CrossRef]
- Mou, W.; Li, J.; Fu, X.; Huang, C.; Chen, L.; Liu, Y. SiO2 and ZnO hybrid nanofillers modified natural rubber latex: Excellent mechanical and antibacterial properties. Polym. Eng. Sci. 2022, 62, 3110. [Google Scholar] [CrossRef]
- Bakošová, D.; Bakošová, A. Testing of Rubber Composites Reinforced with Carbon Nanotubes. Polymers 2022, 14, 3039. [Google Scholar] [CrossRef]
- Kazemi, H.; Mighri, F.; Park, K.W.; Frikha, S.; Rodrigue, D. Hybrid nanocellulose/carbon nanotube/natural rubber nanocomposites with a continuous three-dimensional conductive network. Polym. Compos. 2022, 43, 2362. [Google Scholar] [CrossRef]
- Ren, Z.; Fan, M.; Zhang, Z.; Lin, Y.; Guo, Z. Superhydrophobic Carbon Nanotube–Metal Rubber Composites for Emulsion Separation. ACS Appl. Nano Mater. 2021, 4, 13643–13654. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Pongwisuthiruchte, A.; Potiyaraj, P. Up-to-date review on the development of high performance rubber composites based on halloysite nanotube. Appl. Clay Sci. 2019, 183, 105300. [Google Scholar] [CrossRef]
- Nabil, H.; Ismail, H. Preparation and properties of recycled poly(ethylene terephthalate) powder/halloysite nanotubes hybrid-filled natural rubber composites. J. Thermoplas. Compos. Mater. 2015, 28, 415–430. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Lei, Y.; Liu, M.; Jia, D. Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer 2008, 49, 4871–4876. [Google Scholar] [CrossRef]
- Waesateh, K.; Saiwari, S.; Ismail, H.; Othman, N.; Soontaranon, S.; Hayeemasae, N. Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. Inter. J. Polym. Anal. Charac. 2018, 23, 260–270. [Google Scholar] [CrossRef]
- Hayeemasae, N.; Waesateh, K.; Saiwari, S.; Ismail, H.; Othman, N. Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidized natural rubber. Polym. Bull. 2021, 78, 7147–7166. [Google Scholar] [CrossRef]
- Raman, V.S.; Rooj, S.; Das, A.; Stöckelhuber, K.W.; Simon, F.; Nando, G.B.; Heinrich, G. Reinforcement of Solution Styrene Butadiene Rubber by Silane Functionalized Halloysite Nanotubes. J. Macromol. Sci. Part A 2013, 50, 1091–1106. [Google Scholar] [CrossRef]
- Masa, A.; Hayeemasae, N. Insight into Mechanical Properties and Strain-induced Crystallisation of Epoxidized Natural Rubber Filled with Various Silanized Halloysite Nanotubes. Mater. Res. 2022, 25, e20210602. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Zhang, C.; Yang, W.; Lin, J.; Bian, X.; He, S. Performance of silicone rubber composites using boron nitride to replace alumina tri-hydrate. High Vol. 2021, 6, 480–486. [Google Scholar] [CrossRef]
- Yuan, P.; Southon, P.D.; Liu, Z.; Green, M.E.; Hook, J.M.; Antill, S.J.; Kepert, C.J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751. [Google Scholar] [CrossRef]
- He, S.; Hu, J.; Zhang, C.; Wang, J.; Chen, L.; Bian, X.; Lin, J.; Du, X. Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane. Polym. Test. 2018, 67, 295–301. [Google Scholar] [CrossRef]
- He, S.; Xue, Y.; Lin, J.; Zhang, L.; Du, X.; Chen, L. Effect of silane coupling agent on the structure and mechanical properties of nano-dispersed clay filled styrene butadiene rubber. Polym. Compos. 2016, 37, 890–896. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J., Jr. Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Marykutty, C.; Mathew, G.; Mathew, E.; Thomas, S. Studies on novel binary accelerator system in sulfur vulcanization of natural rubber. J. Appl. Polym. Sci. 2003, 90, 3173–3182. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Thakur, V.; Mahaling, R.; Bhowmick, A.K.; Heinrich, G. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater. Des. 2010, 31, 2151–2156. [Google Scholar] [CrossRef]
- Kaewsakul, W.; Sahakaro, K.; Dierkes, W.K.; Noordermeer, J.W.M. Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polym. Eng. Sci. 2015, 55, 836–842. [Google Scholar] [CrossRef]
- Jehsoh, N.; Masa, A.; Surya, I.; Ismail, H.; Hayeemasae, N. Reducing the Payne Effect of the Natural Rubber/Sepiolite Composite by Introducing Modified Palm Stearin. Polymer 2022, 46, 6–12. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar] [CrossRef]
- Chenal, J.M.; Gauthier, C.; Chazeau, L.; Guy, L.; Bomal, Y. Parameters governing strain induced crystallization in filled natural rubber. Polymer 2007, 48, 6893–6901. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Park, S.-Y.; Chung, K.-H.; Jang, K.-S. Phlogopite-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer Rubber (EPDM) Composites with Aminosilane Compatibilizer. Polymers 2021, 13, 2318. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.; Ryu, S.; Gu, G.X. Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 2020, 189, 108509. [Google Scholar] [CrossRef]
- Hayeemasae, N.; Sensem, Z.; Surya, I.; Sahakaro, K.; Ismail, H. Synergistic effect of maleated natural rubber and modified palm stearin as dual compatibilizers in composites based on natural rubber and halloysite nanotubes. Polymers 2020, 12, 766. [Google Scholar] [CrossRef] [Green Version]
- Toki, S.; Fujimaki, T.; Okuyama, M. Strain-induced crystallization of natural rubber as detected real-time by wide-angle X-ray diffraction technique. Polymer 2000, 41, 5423–5429. [Google Scholar] [CrossRef]
- Murakami, S.; Senoo, K.; Toki, S.; Kohjiya, S. Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 2002, 43, 2117–2120. [Google Scholar] [CrossRef]
- Spratte, T.; Plagge, J.; Wunde, M.; Klüppel, M. Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polymer 2017, 115, 12–20. [Google Scholar] [CrossRef]
- Ozbas, B.; Toki, S.; Hsiao, B.S.; Chu, B.; Register, R.A.; Aksay, I.A.; Prud’homme, R.K.; Adamson, D.H. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 718–723. [Google Scholar] [CrossRef]
Ingredients | Amount (phr) | ||||
---|---|---|---|---|---|
Control | TESPT | APTES | AEAPTMS | VTMS | |
RSS 3 | 100 | 100 | 100 | 100 | 100 |
Zinc oxide | 5 | 5 | 5 | 5 | 5 |
Stearic acid | 1 | 1 | 1 | 1 | 1 |
HNT | 10 | 10 | 10 | 10 | 10 |
Silane * | - | 0.5 | 0.4 | 0.4 | 0.3 |
CBS | 2 | 2 | 2 | 2 | 2 |
Sulfur | 2 | 2 | 2 | 2 | 2 |
Silane Type | ML (dN.m) | MH (dN.m) | MH-ML (dN.m) | ts1 (Min) | tc90 (Min) | CRI (Min−1) |
---|---|---|---|---|---|---|
Control | 1.12 | 9.66 | 8.54 | 1.15 | 2.99 | 32.29 |
TESPT | 1.14 | 9.61 | 8.47 | 1.24 | 2.84 | 33.97 |
APTES | 1.08 | 10.01 | 8.93 | 0.98 | 3.02 | 32.13 |
AEAPTMS | 1.15 | 9.95 | 8.80 | 0.76 | 2.84 | 34.45 |
VTMS | 0.98 | 9.72 | 8.74 | 1.04 | 3.33 | 28.99 |
Silane Type | Tensile Strength (MPa) | Elongation at Break (%) | M100 (MPa) | M300 (MPa) |
---|---|---|---|---|
Control | 26.84 ± 0.36 | 656 ± 19 | 0.85 ± 0.01 | 2.37 ± 0.02 |
TESPT | 26.57 ± 0.52 | 655 ± 16 | 0.87 ± 0.02 | 2.67 ± 0.12 |
APTES | 26.81 ± 0.45 | 650 ± 6 | 0.86 ± 0.48 | 2.40 ± 0.49 |
AEAPTMS | 28.17 ± 0.19 | 621 ± 19 | 0.90 ± 0.01 | 3.03 ± 0.18 |
VTMS | 26.84 ± 0.45 | 653 ± 9 | 0.84 ± 0.02 | 2.50 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayeemasae, N.; Masa, A.; Othman, N.; Surya, I. Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers 2023, 15, 29. https://doi.org/10.3390/polym15010029
Hayeemasae N, Masa A, Othman N, Surya I. Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers. 2023; 15(1):29. https://doi.org/10.3390/polym15010029
Chicago/Turabian StyleHayeemasae, Nabil, Abdulhakim Masa, Nadras Othman, and Indra Surya. 2023. "Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes" Polymers 15, no. 1: 29. https://doi.org/10.3390/polym15010029
APA StyleHayeemasae, N., Masa, A., Othman, N., & Surya, I. (2023). Viable Properties of Natural Rubber/Halloysite Nanotubes Composites Affected by Various Silanes. Polymers, 15(1), 29. https://doi.org/10.3390/polym15010029