Spread Layers of Lysozyme Microgel at Liquid Surface
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt, C.; Bovay, C.; Rouvet, M.; Shojaei-Rami, S.; Kolodziejczyk, E. Whey Protein Soluble Aggregates from Heating with NaCl: Physicochemical, Interfacial, and Foaming Properties. Langmuir 2007, 23, 4155–4166. [Google Scholar] [CrossRef] [PubMed]
- Rullier, B.; Axelos, M.A.V.; Langevin, D.; Novales, B. β-Lactoglobulin Aggregates in Foam Films: Correlation between Foam Films and Foaming Properties. J. Colloid Interface Sci. 2009, 336, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Velikov, K.P.; Velev, O.D. Pickering Stabilization of Foams and Emulsions with Particles of Biological Origin. Curr. Opin. Colloid Interface Sci. 2014, 19, 490–500. [Google Scholar] [CrossRef]
- Schmitt, C.; Bovay, C.; Rouvet, M. Bulk Self-Aggregation Drives Foam Stabilization Properties of Whey Protein Microgels. Food Hydrocoll. 2014, 42, 139–148. [Google Scholar] [CrossRef]
- Jordens, S.; Ruhs, P.A.; Sieber, C.; Isa, L.; Fischer, P.; Mezzenga, R. Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir 2014, 30, 10090–10097. [Google Scholar] [CrossRef] [PubMed]
- Oboroceanu, D.; Wang, L.; Magner, E.; Auty, M.A.E. Fibrillization of Whey Proteins Improves Foaming Capacity and Foam Stability at Low Protein Concentrations. J. Food Eng. 2014, 121, 102. [Google Scholar] [CrossRef]
- Wan, Z.; Yang, X.; Sagis, L.M.C.C. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant. Langmuir 2016, 32, 3679–3690. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Yang, X.; Sagis, L.M.C. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Langmuir 2016, 32, 8092–8101. [Google Scholar] [CrossRef]
- Murphy, R.W.; Farkas, B.E.; Jones, O.G. Dynamic and Viscoelastic Interfacial Behavior of β-Lactoglobulin Microgels of Varying Sizes at Fluid Interfaces. J. Colloid Interface Sci. 2016, 466, 12–19. [Google Scholar] [CrossRef]
- Lazidis, A.; Hancocks, R.D.; Spyropoulos, F.; Kreuß, M.; Berrocal, R.; Norton, I.T. Whey Protein Fluid Gels for the Stabilisation of Foams. Food Hydrocoll. 2016, 53, 209–217. [Google Scholar] [CrossRef]
- Knowles, T.P.J.J.; Mezzenga, R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Adv. Mater. 2016, 28, 6546–6561. [Google Scholar] [CrossRef]
- Dombrowski, J.; Johler, F.; Warncke, M.; Kulozik, U. Correlation between Bulk Characteristics of Aggregated β-Lactoglobulin and Its Surface and Foaming Properties. Food Hydrocoll. 2016, 61, 318. [Google Scholar] [CrossRef]
- Jung, J.-M.; Gunes, D.Z.; Mezzenga, R. Interfacial Activity and Interfacial Shear Rheology of Native β-Lactoglobulin Monomers and Their Heat-Induced Fibers. Langmuir 2010, 26, 15366–15375. [Google Scholar] [CrossRef]
- Dombrowski, J.; Gschwendtner, M.; Kulozik, U. Evaluation of Structural Characteristics Determining Surface and Foaming Properties of β-Lactoglobulin Aggregates. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 286–295. [Google Scholar] [CrossRef]
- Peng, D.; Yang, J.; Li, J.; Tang, C.; Li, B. Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of PH. J. Agric. Food Chem. 2017, 65, 10658–10665. [Google Scholar] [CrossRef]
- Peng, D.; Jin, W.; Li, J.; Xiong, W.; Pei, Y.; Wang, Y.; Li, Y.; Li, B. Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface. J. Agric. Food Chem. 2017, 65, 2454–2460. [Google Scholar] [CrossRef]
- Amagliani, L.; Schmitt, C. Globular Plant Protein Aggregates for Stabilization of Food Foams and Emulsions. Trends Food Sci. Technol. 2017, 67, 248–259. [Google Scholar] [CrossRef]
- Mohammadian, M.; Madadlou, A. Technological Functionality and Biological Properties of Food Protein Nanofibrils Formed by Heating at Acidic Condition. Trends Food Sci. Technol. 2018, 75, 115–128. [Google Scholar] [CrossRef]
- Mantovani, R.A.; de Figueiredo Furtado, G.; Netto, F.M.; Cunha, R.L. Assessing the Potential of Whey Protein Fibril as Emulsifier. J. Food Eng. 2018, 223, 99–108. [Google Scholar] [CrossRef]
- Gharbi, N.; Labbafi, M. Influence of Treatment-Induced Modification of Egg White Proteins on Foaming Properties. Food Hydrocoll. 2019, 90, 72–81. [Google Scholar] [CrossRef]
- Hu, J.; Yang, J.; Xu, Y.; Zhang, K.; Nishinari, K.; Phillips, G.O.; Fang, Y. Comparative Study on Foaming and Emulsifying Properties of Different Beta-Lactoglobulin Aggregates. Food Funct. 2019, 10, 5922–5930. [Google Scholar] [CrossRef]
- Noskov, B.A.; Bykov, A.G.; Gochev, G.; Lin, S.Y.; Loglio, G.; Miller, R.; Milyaeva, O.Y. Adsorption Layer Formation in Dispersions of Protein Aggregates. Adv. Colloid Interface Sci. 2020, 276, 102086. [Google Scholar] [CrossRef]
- Murray, B.S. Recent Developments in Food Foams. Curr. Opin. Colloid Interface Sci. 2020, 50, 101394. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Axelos, M.A.V.; Riaublanc, A. Interfacial Properties of Fractal and Spherical Whey Protein Aggregates. Soft Matter 2011, 7, 7643–7654. [Google Scholar] [CrossRef]
- Peng, D.; Jin, W.; Zhou, P.; Ren, C.; Li, B. Foaming and Surface Rheological Behaviors of Gliadin Particles: Effect of Solvent and Concentration of Gliadin Stock Solution. Food Hydrocoll. 2020, 106, 105868. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, G.; Pang, X.; Wen, Z.; Yi, J. Physicochemical, Emulsifying, and Interfacial Properties of Different Whey Protein Aggregates Obtained by Thermal Treatment. LWT 2021, 149, 111904. [Google Scholar] [CrossRef]
- Peng, D.; Jin, W.; Sagis, L.M.C.; Li, B. Adsorption of Microgel Aggregates Formed by Assembly of Gliadin Nanoparticles and a β-Lactoglobulin Fibril-Peptide Mixture at the Air/Water Interface: Surface Morphology and Foaming Behavior. Food Hydrocoll. 2022, 122, 107039. [Google Scholar] [CrossRef]
- Yang, M.; Liu, J.; Guo, J.; Yang, X.; Liu, C.; Zhang, M.; Li, Y.; Zhang, H.; Zhang, T.; Du, Z. Tailoring the Physicochemical Stability and Delivery Properties of Emulsions Stabilized by Egg White Microgel Particles via Glycation: Role of Interfacial Particle Network and Digestive Metabolites. Food Hydrocoll. 2022, 131, 107833. [Google Scholar] [CrossRef]
- Han, Z.; Yue, X.; Shao, J.H. The Adsorption Characteristics of 2D Fibril and 3D Hydrogel Aggregates at the O/W Interface Combining Molecular Dynamics Simulation. Food Hydrocoll. 2022, 128, 107537. [Google Scholar] [CrossRef]
- Noskov, B.A.; Rafikova, A.R.; Milyaeva, O.Y. β-Lactoglobulin Microgel Layers at the Surface of Aqueous Solutions. J. Mol. Liq. 2022, 351, 118658. [Google Scholar] [CrossRef]
- Li, C.; Qin, R.; Liu, R.; Miao, S.; Yang, P. Functional Amyloid Materials at Surfaces/Interfaces. Biomater. Sci. 2018, 6, 462–472. [Google Scholar] [CrossRef]
- Isa, L.; Jung, J.-M.; Mezzenga, R. Unravelling Adsorption and Alignment of Amyloid Fibrils at Interfaces by Probe Particle Tracking. Soft Matter 2011, 7, 8127. [Google Scholar] [CrossRef]
- Ruhs, P.A.; Scheuble, N.; Windhab, E.J.; Mezzenga, R.; Fischer, P.; Rühs, P.A.; Scheuble, N.; Windhab, E.J.; Mezzenga, R.; Fischer, P. Simultaneous Control of Ph and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces. Langmuir 2012, 28, 12536–12543. [Google Scholar] [CrossRef]
- Rühs, P.A.; Affolter, C.; Windhab, E.J.; Fischer, P. Shear and Dilatational Linear and Nonlinear Subphase Controlled Interfacial Rheology of β-Lactoglobulin Fibrils and Their Derivatives. J. Rheol. N. Y. 2013, 57, 1003–1022. [Google Scholar] [CrossRef]
- Humblet-Hua, N.-P.K.; van der Linden, E.; Sagis, L.M.C. Surface Rheological Properties of Liquid–Liquid Interfaces Stabilized by Protein Fibrillar Aggregates and Protein–Polysaccharide Complexes. Soft Matter 2013, 9, 2154. [Google Scholar] [CrossRef]
- Nicolai, T.; Durand, D. Controlled Food Protein Aggregation for New Functionality. Curr. Opin. Colloid Interface Sci. 2013, 18, 249–256. [Google Scholar] [CrossRef]
- Jordens, S.; Isa, L.; Usov, I.; Mezzenga, R. Non-Equilibrium Nature of Two-Dimensional Isotropic and Nematic Coexistence in Amyloid Fibrils at Liquid Interfaces. Nat. Commun. 2013, 4, 1917. [Google Scholar] [CrossRef]
- Nuallain, B.O.; Shivaprasad, S.; Kheterpal, I.; Wetzel, R. Thermodynamics of A Beta (1–40) Amyloid Fibril Elongation. Biochemistry 2005, 44, 12709–12718. [Google Scholar] [CrossRef]
- Wetzel, R. Kinetics and Thermodynamics of Amyloid Fibril Assembly. Acc. Chem. Res. 2006, 39, 671–679. [Google Scholar] [CrossRef]
- Noskov, B.A.; Akentiev, A.V.; Bilibin, A.Y.; Zorin, I.; Miller, R. Dilational Surface Viscoelasticity of Polymer Solutions. Adv. Colloid Interface Sci. 2003, 104, 245–271. [Google Scholar] [CrossRef]
- Noskov, B.A.; Isakov, N.A.; Gochev, G.; Loglio, G.; Miller, R. Interaction of Fullerene C60 with Bovine Serum Albumin at the Water–Air Interface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127702. [Google Scholar] [CrossRef]
- Michailov, A.; Povolotskiy, A.; Kuzmin, V. Angular Invariance of the Contribution of an Anisotropic Thin Surface Layer to Reflectance and Reflectance-Absorbance. Opt. Express 2021, 29, 3090. [Google Scholar] [CrossRef]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta-Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Pinaud, F.; Geisel, K.; Massé, P.; Catargi, B.; Isa, L.; Richtering, W.; Ravaine, V.; Schmitt, V. Adsorption of Microgels at an Oil-Water Interface: Correlation between Packing and 2D Elasticity. Soft Matter 2014, 10, 6963–6974. [Google Scholar] [CrossRef]
- Li, Z.; Richtering, W.; Ngai, T. Poly(N-Isopropylacrylamide) Microgels at the Oil–Water Interface: Temperature Effect. Soft Matter 2014, 10, 6182–6191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milyaeva, O.Y.; Akentiev, A.V.; Bykov, A.G.; Lin, S.-Y.; Loglio, G.; Miller, R.; Michailov, A.V.; Rotanova, K.Y.; Noskov, B.A. Spread Layers of Lysozyme Microgel at Liquid Surface. Polymers 2022, 14, 3979. https://doi.org/10.3390/polym14193979
Milyaeva OY, Akentiev AV, Bykov AG, Lin S-Y, Loglio G, Miller R, Michailov AV, Rotanova KY, Noskov BA. Spread Layers of Lysozyme Microgel at Liquid Surface. Polymers. 2022; 14(19):3979. https://doi.org/10.3390/polym14193979
Chicago/Turabian StyleMilyaeva, Olga Yu., Alexander V. Akentiev, Alexey G. Bykov, Shi-Yow Lin, Giuseppe Loglio, Reinhard Miller, Alexander V. Michailov, Ksenia Yu. Rotanova, and Boris A. Noskov. 2022. "Spread Layers of Lysozyme Microgel at Liquid Surface" Polymers 14, no. 19: 3979. https://doi.org/10.3390/polym14193979
APA StyleMilyaeva, O. Y., Akentiev, A. V., Bykov, A. G., Lin, S.-Y., Loglio, G., Miller, R., Michailov, A. V., Rotanova, K. Y., & Noskov, B. A. (2022). Spread Layers of Lysozyme Microgel at Liquid Surface. Polymers, 14(19), 3979. https://doi.org/10.3390/polym14193979