Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Dimethyl 2,5-Furandicarboxylate (DMFDC)
2.3. Synthesis of Poly(Isosorbide 2,5-Furandicarboxylate-Co-dodecanedioate) (Co)Polyesters (PIsFDDs)
2.4. Characterization Techniques
2.5. PIsFDDs Degradation under Simulated Sea Water, Enzymatic, and PBS Hydrolytic Conditions
3. Results and Discussion
3.1. Structural Characterization of PIsFDDs
3.2. Crystallization Behavior and Thermal Properties
3.3. Degradation Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef] [PubMed]
- Degli Innocenti, F.; Breton, T. Intrinsic Biodegradability of Plastics and Ecological Risk in the Case of Leakage. ACS Sustain. Chem. Eng. 2020, 8, 9239–9249. [Google Scholar] [CrossRef]
- Millican, J.M.; Agarwal, S. Plastic Pollution: A Material Problem? Macromolecules 2021, 54, 4455–4469. [Google Scholar] [CrossRef]
- Wang, G.X.; Huang, D.; Ji, J.H.; Völker, C.; Wurm, F.R. Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Adv. Sci. 2021, 8, 2001121. [Google Scholar] [CrossRef]
- Wayman, C.; Niemann, H. The fate of plastic in the ocean environment-a minireview. Environ. Sci. Process. Impacts 2021, 23, 198–212. [Google Scholar] [CrossRef]
- Vilela, C.; Sousa, A.F.; Fonseca, A.C.; Serra, A.C.; Coelho, J.F.J.; Freire, C.S.R.; Silvestre, A.J.D. The quest for sustainable polyesters-insights into the future. Polym. Chem. 2014, 5, 3119–3141. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Huang, W.; Wen, X.; Tang, W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020, 263, 114469. [Google Scholar] [CrossRef]
- Sousa, A.F.; Silvestre, A.J.D.; Gandini, A.; Neto, C.P. Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. High Perform. Polym. 2012, 24, 4–8. [Google Scholar] [CrossRef]
- Matos, M.; Sousa, A.F.; Fonseca, A.C.; Freire, C.S.R.; Coelho, J.F.J.; Silvestre, A.J.D. A new generation of furanic copolyesters with enhanced degradability: Poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters. Macromol. Chem. Phys. 2014, 215, 2175–2184. [Google Scholar] [CrossRef]
- Soares, M.J.; Dannecker, P.K.; Vilela, C.; Bastos, J.; Meier, M.A.R.; Sousa, A.F. Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. Eur. Polym. J. 2017, 90, 301–311. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Papadopoulos, L.; Zamboulis, A.; Papageorgiou, D.G.; Papageorgiou, G.Z.; Bikiaris, D.N. Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: A review. Polymers 2020, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Morales-Huerta, J.C.; Ciulik, C.B.; De Ilarduya, A.M.; Muñoz-Guerra, S. Fully bio-based aromatic-aliphatic copolyesters: Poly(butylene furandicarboxylate-: Co -succinate)s obtained by ring opening polymerization. Polym. Chem. 2017, 8, 748–760. [Google Scholar] [CrossRef]
- Liu, W.; Xie, T.; Qiu, R. Biobased Thermosets Prepared from Rigid Isosorbide and Flexible Soybean Oil Derivatives. ACS Sustain. Chem. Eng. 2017, 5, 774–783. [Google Scholar] [CrossRef]
- Soccio, M.; Costa, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Manaresi, P.; Munari, A. Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. Eur. Polym. J. 2016, 81, 397–412. [Google Scholar] [CrossRef]
- Chebbi, Y.; Kasmi, N.; Majdoub, M.; Cerruti, P.; Scarinzi, G.; Malinconico, M.; Dal Poggetto, G.; Papageorgiou, G.Z.; Bikiaris, D.N. Synthesis, Characterization, and Biodegradability of Novel Fully Biobased Poly(decamethylene- co-isosorbide 2,5-furandicarboxylate) Copolyesters with Enhanced Mechanical Properties. ACS Sustain. Chem. Eng. 2019, 7, 5501–5514. [Google Scholar] [CrossRef]
- Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Loup, R.; Pascault, J.P. Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci. 2010, 35, 578–622. [Google Scholar] [CrossRef]
- Rose, M.; Palkovits, R. Isosorbide as a renewable platform chemical for versatile applications-quo vadis? ChemSusChem 2012, 5, 167–176. [Google Scholar] [CrossRef]
- Wilbon, P.A.; Swartz, J.L.; Meltzer, N.R.; Brutman, J.P.; Hillmyer, M.A.; Wissinger, J.E. Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustain. Chem. Eng. 2017, 5, 9185–9190. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Qi, J.; Wang, H. Systematic Study of Thermal and (Bio)Degradable Properties of Semiaromatic Copolyesters Based on Naturally Occurring Isosorbide. ACS Sustain. Chem. Eng. 2019, 7, 1061–1071. [Google Scholar] [CrossRef]
- Wu, Y.; Fei, M.; Chen, T.; Qiu, R.; Liu, W. Fabrication of degradable and high glass-transition temperature thermosets from palm oil and isosorbide for fiber-reinforced composites. Ind. Crops Prod. 2021, 170, 113744. [Google Scholar] [CrossRef]
- Lomelí-Rodríguez, M.; Corpas-Martínez, J.R.; Willis, S.; Mulholland, R.; Lopez-Sanchez, J.A. Synthesis and characterization of renewable polyester coil coatings from biomass-derived isosorbide, FDCA, 1,5-pentanediol, succinic acid, and 1,3-propanediol. Polymers 2018, 10, 600. [Google Scholar] [CrossRef]
- Okada, M.; Okada, Y.; Aoi, K. Synthesis and degradabilities of polyesters from 1,4:3,6-dianhydrohexitols and aliphatic dicarboxylic acids. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 2813–2820. [Google Scholar] [CrossRef]
- Okada, M.; Okada, Y.; Tao, A.; Aoi, K. Biodegradable polymers based on renewable resources: Polyesters composed of 1,4:3,6-dianhydrohexitol and aliphatic dicarboxylic acid units. J. Appl. Polym. Sci. 1996, 62, 2257–2265. [Google Scholar] [CrossRef]
- Okada, M.; Tsunoda, K.; Tachikawa, K.; Aoi, K. Biodegradable Polymers Based on Renewable Resources. IV. Enzymatic Degradation of Polyesters Composed of 1,4:3.6-Dianhydro-D-glucitol and Aliphatic Dicarboxylic Acid Moieties. J. Appl. Polym. Sci. 2000, 77, 338–346. [Google Scholar] [CrossRef]
- Kasmi, N.; Terzopoulou, Z.; Chebbi, Y.; Dieden, R.; Habibi, Y.; Bikiaris, D.N. Tuning thermal properties and biodegradability of poly(isosorbide azelate) by compositional control through copolymerization with 2,5-furandicarboxylic acid. Polym. Degrad. Stab. 2022, 195, 109804. [Google Scholar] [CrossRef]
- Ayorinde, F.O.; Powers, F.T.; Streete, L.D.; Shepard, R.L.; Tabi, D.N. Synthesis of dodecanedioic acid from vernonia galamensis oil. J. Am. Oil Chem. Soc. 1989, 66, 690–692. [Google Scholar] [CrossRef]
- Song, J.W.; Lee, J.H.; Bornscheuer, U.T.; Park, J.B. Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids. Adv. Synth. Catal. 2014, 356, 1782–1788. [Google Scholar] [CrossRef]
- Jannesari, A.; Ghaffarian, S.R.; Mohammadi, N.; Taromi, F.A.; Molaei, A. Liquid crystalline thermosets as binder for powder coatings—Thermoanalytical study of the cure characteristics of a carboxylated main chain liquid crystalline oligoester. Prog. Org. Coat. 2004, 50, 213–223. [Google Scholar] [CrossRef]
- Takasu, A.; Takemoto, A.; Hirabayashi, T. Polycondensation of Dicarboxylic Acids and Diols in Water Catalyzed by Surfactant-Combined Catalysts and Successive Chain Extension. Biomacromolecules 2006, 7, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Gandini, A.; Silvestre, A.J.D.; Neto, C.P.; Sousa, A.F.S.; Gomes, M. The Furan Counterpart of (polyethylene terephthalate): An Alternative Material Based on Renewable Resources. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 295–298. [Google Scholar] [CrossRef]
- Marubayashi, H.; Ushio, T.; Nojima, S. Crystallization of polyesters composed of isohexides and aliphatic dicarboxylic acids: Effects of isohexide stereoisomerism and dicarboxylic acid chain length. Polym. Degrad. Stab. 2017, 146, 174–183. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Kasmi, N.; Tsanaktsis, V.; Doulakas, N.; Bikiaris, D.N.; Achilias, D.S.; Papageorgiou, G.Z. Synthesis and characterization of bio-based polyesters: Poly(2-methyl-1,3-propylene-2,5-furanoate), Poly(isosorbide-2,5-furanoate), Poly(1,4-cyclohexanedimethylene-2,5-furanoate). Materials 2017, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.; Soares, M.J.; Bougarech, A.; Thiyagarajan, S.; Guigo, N.; Abid, S.; Abid, M.; Silvestre, A.J.D.; Sousa, A.F. Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur. Polym. J. 2021, 150, 110413. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, J.; Sun, L.; Zhu, J.; Liu, X. Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. J. Appl. Polym. Sci. 2018, 135, 46076. [Google Scholar] [CrossRef]
- Japu, C.; Martínez De Ilarduya, A.; Alla, A.; Jiang, Y.; Loos, K.; Muñoz-Guerra, S. Copolyesters Made from 1,4-Butanediol, Sebacic Acid, and D-Glucose by Melt and Enzymatic Polycondensation. Biomacromolecules 2015, 16, 868–879. [Google Scholar] [CrossRef] [Green Version]
Polymer | F/DDfeed (mol%) | F/DDreal (mol%) | [η]/dL·g−1 |
---|---|---|---|
PIsDD | 0/100 | 0/100 | 0.20 |
PIsFDD | |||
(10/90) | 10/90 | 6/94 | 0.18 |
(20/80) | 20/80 | 12/88 | 0.17 |
(60/40) | 60/40 | 47/63 | 0.17 |
(70/30) | 70/30 | 62/36 | 0.12 |
(80/20) | 80/20 | 76/24 | 0.13 |
PIsF | 100/0 | 100/0 | 0.20 |
Sample | DSC | DMTA b | TGA | |||
---|---|---|---|---|---|---|
Tg/°C | Tm/°C a | Tβ/°C | Tg/°C | Td,5%/°C | Td,max/°C | |
PIsDD | - | 72.3 | - | −6.3 | 323.9 | 423.0 |
PIsFDD | ||||||
(10/90) | 9.0 a | 71.9 | - | 1.7 | 330.4 | 423.5 |
(20/80) | −8.5 | 70.5 | - | 0.2 | 286.7 | 422.7 |
(60/40) | 38.8 | - | −13.6 | 52.2 | 314.9 | 407.7 |
(70/30) | 59.9 | - | −11.3 | 73.8 | 312.1 | 404.0 |
PIsF | - | - | - | 137.9 | 327.3 | 398.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouyahya, C.; Patrício, R.; Paço, A.; Lima, M.S.; Fonseca, A.C.; Rocha-Santos, T.; Majdoub, M.; Silvestre, A.J.D.; Sousa, A.F. Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers 2022, 14, 3868. https://doi.org/10.3390/polym14183868
Bouyahya C, Patrício R, Paço A, Lima MS, Fonseca AC, Rocha-Santos T, Majdoub M, Silvestre AJD, Sousa AF. Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers. 2022; 14(18):3868. https://doi.org/10.3390/polym14183868
Chicago/Turabian StyleBouyahya, Chaima, Rafael Patrício, Ana Paço, Mafalda S. Lima, Ana C. Fonseca, Teresa Rocha-Santos, Mustapha Majdoub, Armando J. D. Silvestre, and Andreia F. Sousa. 2022. "Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation" Polymers 14, no. 18: 3868. https://doi.org/10.3390/polym14183868
APA StyleBouyahya, C., Patrício, R., Paço, A., Lima, M. S., Fonseca, A. C., Rocha-Santos, T., Majdoub, M., Silvestre, A. J. D., & Sousa, A. F. (2022). Isosorbide and 2,5-Furandicarboxylic Acid Based (Co)Polyesters: Synthesis, Characterization, and Environmental Degradation. Polymers, 14(18), 3868. https://doi.org/10.3390/polym14183868