Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
Abstract
1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Printing
2.2. Thermochemical Redox Cycling Testing in a Solar Reactor
2.3. Elastic Moduli Measurements
2.4. Crushing Tests
2.5. Microstructural Evaluation
3. Results and Discussion
3.1. Materials Characterization
3.2. Crushing Behaviour
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Zhu, Y.; Keoleian, G.A.; Cooper, D.R. The role of hydrogen in decarbonizing U.S. industry: A review. Renew. Sustain. Energy Rev. 2025, 214, 115392. [Google Scholar] [CrossRef]
- Angelico, R.; Giametta, F.; Bianchi, B.; Catalano, P. Green hydrogen for energy transition: A critical perspective. Energies 2025, 18, 404. [Google Scholar] [CrossRef]
- Gutowski, T.G.; Sahni, S.; Allwood, J.M.; Ashby, M.F.; Worrell, E. The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Phil. Trans. R. Soc. A 2013, 371, 20120003. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Alam, T.; Sheibley, N.; Edmonson, K.; Burns, D.; Hernandez, M. Hydrogen blending in natural gas pipelines: A comprehensive review of material compatibility and safety considerations. Int. J. Hydrogen Energy 2024, 93, 1429–1461. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Antón-Sancho, Á.; Lampropoulos, G.; Vergara, D. On green hydrogen generation technologies: A bibliometric review. Appl. Sci. 2024, 14, 2524. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen: Seizing Today’s Opportunities; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 4 June 2025).
- WEC. Innovation Insights Brief: New Hydrogen Economy: Hope or Hype? World Energy Council: London, UK, 2019; Available online: https://www.worldenergy.org/assets/downloads/WEInsights-Brief-New-Hydrogen-economy-Hype-or-Hope-ExecSum.pdf (accessed on 4 June 2025).
- WEC. Hydrogen Insights 2024. World Energy Council. Available online: https://hydrogencouncil.com/wp-content/uploads/2024/09/Hydrogen-Insights-2024.pdf (accessed on 4 June 2025).
- Wei, L.; Pan, Z.; An, L. Two-step thermochemical cycle for solar fuel production from H2O and CO2: Technological challenges and potential solutions. Chem. Commun. 2025, 61, 4897–4903. [Google Scholar] [CrossRef]
- Kubicek, M.; Bork, A.H.; Rupp, J.L.M. Perovskite oxides—A review on a versatile material class for solar-to-fuel conversion processes. J. Mater. Chem. A 2017, 5, 11983–12000. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 2017, 10, 1142–1149. [Google Scholar] [CrossRef]
- Haeussler, A.; Abanades, S.; Julbe, A.; Jouannaux, J.; Cartoixa, B. Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor. Energy 2020, 201, 117649. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Scheffe, J.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A. Demonstration of the entire production chain to renewable kerosene via solar thermochemical splitting of H2O and CO2. Energy Fuels 2015, 29, 3241–3250. [Google Scholar] [CrossRef]
- Coronado, J.M.; Bayón, A. Catalytic enhancement of production of solar thermochemical fuels: Opportunities and limitations. Phys. Chem. Chem. Phys. 2023, 25, 17092–17106. [Google Scholar] [CrossRef] [PubMed]
- Chueh, W.C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S.M.; Steinfeld, A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 2010, 330, 1797–1801. [Google Scholar] [CrossRef]
- Chen, C.; Jiao, F.; Lu, B.; Liu, T.; Liu, Q.; Jin, H. Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles. Carb. Neutrality 2023, 2, 9. [Google Scholar] [CrossRef]
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Abanades, S. Redox cycles, active materials, and reactors applied to water and carbon dioxide splitting for solar thermochemical fuel production: A review. Energies 2022, 15, 7061. [Google Scholar] [CrossRef]
- Dadkhah, M.; Tulliani, J.-M.; Saboori, A.; Iuliano, L. Additive manufacturing of ceramics: Advances, challenges, and outlook. J. Eur. Ceram. Soc. 2023, 43, 6635–6664. [Google Scholar] [CrossRef]
- Ullah, A.; Shah, M.; Ali, Z.; Asami, K.; Ur Rehman, A.; Emmelmann, C. Additive manufacturing of ceramics via the laser powder bed fusion process. Int. J. Appl. Ceram. Technol. 2025, 22, e15087. [Google Scholar] [CrossRef]
- Jasik, K.; Kluczyński, J.; Miedzińska, D.; Popławski, A.; Łuszczek, J.; Zygmuntowicz, J.; Piotrkiewicz, P.; Perkowski, K.; Wachowski, M.; Grzelak, K. Comparison of additively manufactured polymer-ceramic parts obtained via different technologies. Materials 2024, 17, 240. [Google Scholar] [CrossRef]
- Pandey, S.K.; Dixit, A.R. A multistage de-binding approach for material extrusion-based additively manufactured fabricated zirconia ceramics. J. Korean Ceram. Soc. 2025, 62, 553–566. [Google Scholar] [CrossRef]
- Costa Oliveira, F.A.; Barreiros, M.A.; Sardinha, M.; Leite, M.; Fernandes, J.C.; Abanades, S. Thermochemical performance of ceria coated-macroporous 3D-printed black zirconia structures for solar CO/H2 fuels production. Int. J. Hydrogen Energy 2025, 100, 477–490. [Google Scholar] [CrossRef]
- Orlovská, M.; Hain, M.; Kitzmantel, M.; Veteška, P.; Hajdúchová, Z.; Janek, M.; Vozárová, M.; Bača, L. Monitoring of critical processing steps during the production of high dense 3D alumina parts using fused filament fabrication technology. Addit. Manuf. 2021, 48 Pt A, 102395. [Google Scholar] [CrossRef]
- Truxová, V.; Šafka, J.; Sobotka, J.; Macháček, J.; Ackermann, M. Alumina manufactured by fused filament fabrication: A comprehensive study of mechanical properties and porosity. Polymers 2022, 14, 991. [Google Scholar] [CrossRef] [PubMed]
- Schlacher, J.; Hofer, A.-K.; Geier, S.; Kraleva, I.; Papšík, R.; Schwentenwein, M.; Bermejo, R. Additive manufacturing of high-strength alumina through a multi-material approach. Open Ceram. 2021, 5, 100082. [Google Scholar] [CrossRef]
- Justino Netto, J.; Sardinha, M.; Leite, M. Evaluating geometric conformity and compressive properties of black zirconia gyroid structures obtained through fused filament fabrication. Int. J. Adv. Manuf. Technol. 2025, 138, 1143–1157. [Google Scholar] [CrossRef]
- Cano, S.; Gonzalez-Gutierrez, J.; Sapkota, J.; Spoerk, M.; Arbeiter, F.; Schuschnigg, S.; Holzer, C.; Kukla, C. Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: Selection of binder formulation. Addit. Manuf. 2019, 26, 117–128. [Google Scholar] [CrossRef]
- Cano, S.; Lube, T.; Huber, P.; Gallego, A.; Naranjo, J.A.; Berges, C.; Schuschnigg, S.; Herranz, G.; Kukla, C.; Holzer, C.; et al. Influence of the infill orientation on the properties of zirconia parts produced by fused filament fabrication. Materials 2020, 13, 3158. [Google Scholar] [CrossRef]
- Black Zirconia Zetamix Filament. Available online: https://zetamix.fr/en/produit/black-zirconia-zetamix-filament/ (accessed on 28 May 2025).
- ASTM C1259-96; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International: West Conshohocken, PA, USA, 1996.
- Costa Oliveira, F.A.; Dias, S.; Vaz, M.F.; Fernandes, J.C. Behaviour of open-cell cordierite foams under compression. J. Eur. Ceram. Soc. 2006, 26, 179–186. [Google Scholar] [CrossRef]
- Giraud, S.; Canel, J. Young’s modulus of some SOFCs materials as a function of temperature. J. Eur. Ceram. Soc. 2008, 28, 77–83. [Google Scholar] [CrossRef]
- Rice, R.W. Porosity of Ceramics; Marcel Dekker Inc.: New York, NY, USA, 1998. [Google Scholar]
- Pickup, R. Effect of porosity on Young’s modulus of a porcelain. Brit. Ceram. Trans. 1997, 96, 96–98. [Google Scholar]
- Lopes, M.A.; Silva, R.F.; Monteiro, F.J.; Santos, J.D. Microstructural dependence of Young’s and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomaterial 2000, 21, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Costa Oliveira, F.A. Elastic moduli of open-cell cordierite foams. J. Non-Cryst. Sol. 2005, 351, 1623–1629. [Google Scholar] [CrossRef]
- Costa Oliveira, F.A.; Sardinha, M.; Galindo, J.; Rodríguez, J.; Cañadas, I.; Leite, M.; Fernandes, J.C. Manufacturing and thermal shock resistance of 3D-printed porous black zirconia for concentrated solar applications. Crystals 2023, 13, 1323. [Google Scholar] [CrossRef]
- Weibull, W.A. A Statistical Distribution Function of Wide Applicability. ASME J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Papargyris, A.D. Estimator type and population size for estimating the Weibull modulus in ceramics. J. Eur. Ceram. Soc. 1998, 18, 451–455. [Google Scholar] [CrossRef]
- Nohut, S. Influence of sample size on strength distribution of advanced ceramics. Ceram. Int. 2014, 40, 4285–4295. [Google Scholar] [CrossRef]
- Costa Oliveira, F.A.; Lopes, S.V.B.; Fernandes, J.C. Mechanical characterization of mortar beams. Cienc. Tecnol. Mater. 2017, 29, e172–e176. [Google Scholar]
- Osuchukwua, O.A.; Salihia, A.; Ibrahima, A.; Audua, A.A.; Makoyoa, M.; Mohammedc, S.A.; Lawalc, M.Y.; Etinosad, P.O.; Isaace, I.O.; Onif, P.G.; et al. Weibull analysis of ceramics and related materials: A review. Heliyon 2024, 10, e32495. [Google Scholar] [CrossRef] [PubMed]
- Roos, M.; Schatz, C.; Stawarczyk, B. Two independent prospectively planned blinded Weibull statistical analyses of flexural strength data of zirconia materials. Materials 2016, 9, 512. [Google Scholar] [CrossRef]
- ASTM C1239-06A; Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2006.
- Yang, Y.; Hu, C.; Liu, Q.; Li, J. Research progress and prospects of colored zirconia ceramics: A review. J. Adv. Ceram. 2024, 13, 1505–1522. [Google Scholar] [CrossRef]
- Costa, G.; Della, V.P.; Ribeiro, M.J.; Oliveira, A.P.N.; Monrós, G.; Labrincha, J.A. Synthesis of black ceramic pigments from secondary raw materials. Dyes Pigm. 2008, 77, 137–144. [Google Scholar] [CrossRef]
- Calbo, J.; Sorlí, S.; Llusar, M.; Tena, M.A.; Monrós, G. Minimization of toxicity in nickel ferrite black pigment. Br. Ceram. Trans. 2004, 103, 3–9. [Google Scholar] [CrossRef]
- Briod, R. Method of Manufacturing a Black Zirconia-Based Article and Black Zirconia-Based Decorative Article Notably Obtained by This Method. U.S. Patent 5711906A, 27 January 1998. [Google Scholar]
- Fujisaki, H. Powder for Black Zirconia Sintered Body, Production Method Thereof, and Sintered Body Thereof. European Patent No. EP1857428A1, 21 November 2007. [Google Scholar]
- Lv, H.; Bao, J.; Ruan, F.; Zhou, F.; Wang, Q.; Zhang, W.; Guo, W.; Zhang, Y.; Song, X. Preparation and properties of black Ti-doped zirconia ceramics. J. Mater. Res. Technol. 2020, 9, 6201–6208. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Jeon, J.-P.; Kang, J.; Han, B.; Yu, J.-S. Oxygen-deficient zirconia (ZrO2−x): A new material for solar light absorption. Sci. Rep. 2016, 6, 27218. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Y.; Guo, X.G.; Gao, H.; Lu, Y.; Liu, R. Preparation of colorful zirconia ceramics by liquid precursor infiltration. Rare Met. Mater. Eng. 2018, 47, 375–378. (In Chinese) [Google Scholar]
- Ding, Y.; Wang, Q. Preparation and research of new black zirconia ceramics. Sci. Rep. 2024, 14, 3197. [Google Scholar] [CrossRef] [PubMed]
- Brezny, R.; Green, D.J. Uniaxial strength behavior of brittle cellular materials. J. Am. Ceram. Soc. 1993, 76, 2185–2192. [Google Scholar] [CrossRef]
- Scardi, P.; Maggio, R.D.; Lutterotti, L.; Maistrelli, P. Thermal expansion anisotropy of ceria-stabilized tetragonal zirconia. J. Am. Ceram. Soc. 1992, 75, 2828–2832. [Google Scholar] [CrossRef]
Specimens | ||||||
---|---|---|---|---|---|---|
A | B | C1 | C2 | D | ||
Setup 1 | Tmax (°C) | 1525 ± 50 * | 1450 ± 50 | 1375 ± 25 | 1300 ± 25 | |
Tmin (°C) | 650 ± 50 * | 650 ± 50 | 650 ± 50 | 650 ± 50 | ||
ΔT (K) | 875 | 800 | 725 | |||
No. cycles | 6 | 6 | 6 | 6 | ||
+ | + | + | ||||
Setup 2 | Tmax (°C) | 1525 ± 50 * | 1450 ± 50 | 1375 ± 25 | 1300 ± 25 | |
Tmin (°C) | 650 ± 50 * | 650 ± 50 | 650 ± 50 | 650 ± 50 | ||
ΔT (K) | 875 | 800 | 725 | 650 | ||
No. cycles | 8 | 8 | 8 | 8 | ||
Total number of cycles | 6 | 14 | 14 | 8 | 14 |
After Printing | After Sintering | |
---|---|---|
Strut thickness | 0.34 ± 0.03 | 0.26 ± 0.03 |
Height | 15.50 ± 0.04 | 13.10 ± 0.04 |
Cross-section sides | (15.79 ± 0.05) × (16.54 ± 0.06) | (12.49 ± 0.02) × (13.23 ± 0.03) |
E (GPa) | G (GPa) | υ |
---|---|---|
150 ± 10 | 58 ± 4 | 0.28 ± 0.04 |
Specimens | σcs ± SD (MPa) | σmax ± SD (MPa) | No. Specimens |
---|---|---|---|
A | 1.62 ± 0.22 | - | 6 |
B | 1.31 ± 0.30 | - | 5 |
C1 | 1.44 ± 0.23 | - | 6 |
C2 | 8.30 ± 0.37 | - | 5 |
D | 9.40 ± 0.95 | 16.04 ± 1.70 | 8 |
AS | 10.18 ± 1.31 | 15.94 ± 2.00 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa Oliveira, F.A.; Sardinha, M.; Netto, J.M.J.; Farinha, M.; Leite, M.; Barreiros, M.A.; Abanades, S.; Fernandes, J.C. Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles. Crystals 2025, 15, 629. https://doi.org/10.3390/cryst15070629
Costa Oliveira FA, Sardinha M, Netto JMJ, Farinha M, Leite M, Barreiros MA, Abanades S, Fernandes JC. Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles. Crystals. 2025; 15(7):629. https://doi.org/10.3390/cryst15070629
Chicago/Turabian StyleCosta Oliveira, Fernando A., Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades, and Jorge Cruz Fernandes. 2025. "Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles" Crystals 15, no. 7: 629. https://doi.org/10.3390/cryst15070629
APA StyleCosta Oliveira, F. A., Sardinha, M., Netto, J. M. J., Farinha, M., Leite, M., Barreiros, M. A., Abanades, S., & Fernandes, J. C. (2025). Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles. Crystals, 15(7), 629. https://doi.org/10.3390/cryst15070629