Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
4. Prospective Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, J.S.; Park, E.; Meng, Y.; Xu, Z.; Foucher, A.C.; Jung, G.Y.; Roh, I.; Lee, S.; Kim, S.O.; et al. High energy density in artificial heterostructures through relaxation time modulation. Science 2024, 384, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lan, S.; Yang, B.B.; Pan, H.; Liu, Y.Q.; Zhang, Q.H.; Qi, J.L.; Chen, D.; Su, H.; Yi, D.; et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185–189. [Google Scholar] [CrossRef]
- Gao, Y.; Qiao, W.; Lou, X.; Song, Z.; Zhu, X.; He, L.; Yang, B.; Hu, Y.; Shao, J.; Wang, D.; et al. Ultrahigh energy storage in tungsten bronze dielectric ceramics through a weakly coupled relaxor design. Adv. Mater. 2023, 36, 2310559. [Google Scholar] [CrossRef]
- Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z.; Zhou, T.; Sun, S.-K.; Singh, C.; Trukhanov, S.; et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design. Small 2022, 19, 2206958. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, Y.; Zhu, Q.; Bian, J.; Jin, L.; Du, H.; Alikin, D.O.; Shur, V.Y.; Feng, Y.; Xu, Z.; et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 2019, 67, 104264. [Google Scholar] [CrossRef]
- Nayak, R.L.; Dash, S.S.; Zhang, Y.; Sahoo, M.P.K. Enhanced dielectric, thermal stability, and energy storage properties in compositionally engineered lead-free ceramics at morphotropic phase boundary. Ceram. Int. 2021, 47, 17220–17233. [Google Scholar] [CrossRef]
- Liu, T.; Yan, B.; Ma, J.; He, Q.; An, L.; Chen, K. Enhanced energy storage properties in BNT-based ceramics with a morphotropic phase boundary modified by Sr(Mg1/3Nb2/3)O3. J. Mater. Chem. C 2023, 11, 15294–15302. [Google Scholar] [CrossRef]
- Neha; Richa, P.; Manoj, B.; Parveen, K.; Rajesh Kumar, M.; Chandra, P. Improved dielectric and energy storage properties in (1-x)BaTi0.80Zr0.20O3-xBa0.70Ca0.30Ti0.99Fe0.01O3 ceramics near morphotropic phase boundary. Mater. Lett. 2022, 318, 132126. [Google Scholar] [CrossRef]
- Sharma, S.; Nandan, R.; Malhotra, P.; Kumar, S.; Kumar, R.; Negi, N.S. Morphotropic phase boundary evolution with synergistic effect of sintering temperature to improve electrocaloric and energy storage performances of lead-free Ba0.95Ca0.05Sn0.09Ti0.91O3 (BCST) ceramic. J. Energy Storage 2024, 99, 113295. [Google Scholar] [CrossRef]
- Co, K.; Khassaf, H.; Alpay, S.P. Electrocaloric and pyroelectric properties of barium zirconate titanate. J. Appl. Phys. 2020, 127, 174102. [Google Scholar] [CrossRef]
- Liu, G.; Yu, W.; Wang, Y.; Feng, H.; Hao, M.; Wu, G.; Li, Q.; Yu, K.; Fan, B.; Jin, L.; et al. Electrocaloric effect of (Ba1-xSrx)(HfxTi1-x)O3 lead-free ferroelectric ceramics with phase structure regulation. Ceram. Int. 2023, 49, 34387–34396. [Google Scholar] [CrossRef]
- Wei, X.; Feng, Y.; Wan, X.; Yao, X. Evolvement of dielectric relaxation of barium stannate titanate ceramics. Ceram. Int. 2004, 30, 1397–1400. [Google Scholar] [CrossRef]
- Zhang, H.; Giddens, H.; Saunders, T.G.; Palma, M.; Abrahams, I.; Yan, H.; Hao, Y. Microwave tunability in tin substituted barium titanate. J. Eur. Ceram. Soc. 2023, 44, 1627–1635. [Google Scholar] [CrossRef]
- Yonggang, Y.; Chao, Z.; Duchao, L.; Dong, W.; Haijun, W.; Yaodong, Y.; Xiaobing, R. Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting. EPL 2012, 98, 27008. [Google Scholar] [CrossRef]
- Shi, T.; Xie, L.; Gu, L.; Zhu, J. Why Sn doping significantly enhances the dielectric properties of Ba(Ti1-xSnx)O3. Sci. Rep. 2015, 5, 8606. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, H.; Wu, Y.-Q.; Huang, Z.; Thong, H.-C.; Tao, H.; Ma, J.; Zhao, C.; Xu, Z.; Liu, Y.-X.; et al. Origin of ultrahigh-performance barium titanate-based piezoelectrics: Stannum-induced intrinsic and extrinsic contributions. Nat. Commun. 2024, 15, 7700. [Google Scholar] [CrossRef]
- Marković, S.; Jovalekić, Č.; Veselinović, L.; Mentus, S.; Uskoković, D. Electrical properties of barium titanate stannate functionally graded materials. J. Eur. Ceram. Soc. 2009, 30, 1427–1435. [Google Scholar] [CrossRef]
- Manisha, K.; Sarun, M. High-temperature impedance, modulus spectroscopy, and conductivity study of Nd modified barium stannate titanate electroceramics. ECS Trans. 2022, 107, 11497. [Google Scholar] [CrossRef]
- Ben Mrad, M.; Hannachi, R.; Dammak, M.; Abdelmoula, N.; Zghal, S.; Khemakhem, H. Zirconium and lanthanide effects on the structural, dielectric and optical properties of Na0.8Ba0.2Nb0.8Ti0.2O3 ferroelectric ceramic. Mater. Today Commun. 2020, 24, 101223. [Google Scholar] [CrossRef]
- Lou, Y.; Chen, Y.; Gu, Z.; Qiu, Q.; Shi, C.; He, L.; Xing, Y.; Peng, J.; Li, H.; Chu, Y.; et al. Enhancement of Photoluminescence and Anomalous Thermal Quenching Behavior of Er/Yb/Zr co-doped BaTiO3 Ceramic. Ceram. Int. 2021, 47, 18866–18874. [Google Scholar] [CrossRef]
- Bajpai, K.K.; Sreenivas, K.; Thakur, O.P.; James, A.R.; Shukla, A.K. Influence of Cd doping on the electro-strain of barium zirconate titanate ceramics. Ceram. Int. 2017, 43, 1963–1967. [Google Scholar] [CrossRef]
- Kang, N.; Kim, M.; Song, H.; Ryu, J. Effects of Sm2O3 addition on the dielectric and energy storage properties of BaTiO3 ceramics. J. Korean Ceram. Soc. 2024, 61, 1070–1078. [Google Scholar] [CrossRef]
- Li, Y.-X.; Yao, X.; Wang, X.-S.; Hao, Y.-B. Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 2012, 38, 29–32. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Hao, S.; Janolin, P.-E. Enhancing properties of lead-free ferroelectric BaTiO3 through doping. J. Eur. Ceram. Soc. 2022, 42, 4693–4701. [Google Scholar] [CrossRef]
- Cuiying, M.; Huiling, D.; Jia, L.; Xian, D.; Danni, F. Charge compensation mechanisms of BaTiO3 ceramics co-doped with La2O3 and Bi2O3. Ceram. Int. 2021, 48, 5428–5433. [Google Scholar] [CrossRef]
- Pandey, A.H.; Gupta, S.M. Role of charge compensation mechanism on phase formation, dielectric and ferroelectric properties in aliovalent Gd3+ ion modified PbMg1/3Nb2/3O3 ceramics. Mater. Sci. Eng. 2020, 253, 114495. [Google Scholar] [CrossRef]
- Jing, L.; Li, J.; Ye, T.; Chao, C.; Yu, L.; Qingyuan, H.; Chao, L.; Xiaoyong, W.; Haixue, Y. Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics. J. Mater. 2021, 8, 266–273. [Google Scholar] [CrossRef]
- Jiaqi, C.; Ping, P.; Yongde, L.; Hengchang, N.; Genshui, W. Electrostrain optimization of bismuth sodium titanate-based ceramics by Sm doping. J. Am. Ceram. Soc. 2025, 108, 20415. [Google Scholar] [CrossRef]
- Qiaoli, L.; Junwei, L.; Yongfu, L.; Meijing, W.; Weihao, W.; Dayong, L. Structure-dependent dielectric relaxations in Sm-doped BaTiO3 ceramics. Ceram. Int. 2021, 47, 34042–34049. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Sun, P.; Yang, S.; Zhang, H.; Chen, Q. Electrical transport properties of Sm-doped La0.7Ca0.3MnO3 polycrystalline ceramics. Ceram. Int. 2021, 47, 25281–25286. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, F.; Cai, Y.; Li, H. Enhanced dielectric and relaxation properties in Sm3+ doped KNNT ceramics. Ceram. Int. 2024, 50, 27596–27606. [Google Scholar] [CrossRef]
- Guan, P.; Zhang, Y.; Yang, J.; Zheng, M. Effect of Sm3+ doping on ferroelectric, energy storage and photoluminescence properties of BaTiO3 ceramics. Ceram. Int. 2022, 49, 11796–11802. [Google Scholar] [CrossRef]
- Nikolić, M.G.; Jovanović, D.J.; Đorđević, V.; Antić, Ž.; Krsmanović, R.M.; Dramićanin, M.D. Thermographic properties of Sm3+-doped GdVO4phosphor. Phys. Scr. 2012, 2012, T149. [Google Scholar] [CrossRef]
- Benyoussef, M.; Zannen, M.; Belhadi, J.; Manoun, B.; Dellis, J.-L.; El Marssi, M.; Lahmar, A. Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram. Int. 2018, 44, 19451–19460. [Google Scholar] [CrossRef]
- Li, Y.; Hu, T.; Chen, X.; Xie, J.; Shi, Y. Achieving high energy storage performance in PbHfO3-based antiferroelectric ceramics by Sr element doping. J. Alloys Compd. 2024, 994, 174651. [Google Scholar] [CrossRef]
- Ma, X.; Shi, W.; Yang, Y.; Alikin, D.O.; Shur, Y.Y.; Gao, J.; Wei, X.; Liu, G.; Du, H.; Jin, L. Giant electrocaloric effect and high-field electrostrictive properties in Ba(Ti1−xSnx)O3 ceramics. Ceram. Int. 2023, 49, 18517–18524. [Google Scholar] [CrossRef]
- Dong, S.; Guo, F.; Zhou, H.; Long, W.; Fang, P.; Li, X.; Xi, Z. Phase structures and electrical properties of Sm doped PSN-PMN-PT ceramics. J. Alloys Compd. 2021, 881, 160621. [Google Scholar] [CrossRef]
- Bag, S.; Behera, B. Transport phenomena and conductivity mechanism in Sm doped Bi4V2−xSmxO11 ceramics. J. Sci. Adv. Mater. Dev. 2016, 108, 20415. [Google Scholar] [CrossRef]
- Li, Q.; Bao, S.; Liu, Y.; Li, Y.; Jing, Y.; Li, J. Influence of lightly Sm-substitution on crystal structure, magnetic and dielectric properties of BiFeO3 ceramics. J. Alloys Compd. 2016, 682, 672–678. [Google Scholar] [CrossRef]
- Ghayour, H.; Abdellahi, M. A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol. 2016, 292, 84–93. [Google Scholar] [CrossRef]
- Wang, Z.; Bin, C.; Zheng, S.; Wang, J. Effect of grain size and grain boundary on the energy storage performance of polycrystalline ferroelectrics. Appl. Phys. Lett. 2024, 125, 152903. [Google Scholar] [CrossRef]
- Yangfei, G.; Xiaopei, Z.; Bian, Y.; Peng, S.; Ruirui, K.; Ye, Y.; Qida, L.; Ming, W.; Jinghui, G.; Xiaojie, L. Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties. Chem. Eng. J. 2021, 433, 133584. [Google Scholar] [CrossRef]
- Wang, X.; Huan, Y.; Zhao, P.; Liu, X.; Wei, T.; Zhang, Q.; Wang, X. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors. J. Mater. 2021, 7, 780–789. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Luchechko, A.; Kostiv, Y.; Pankratova, V.; Popov, A.I. Evolution of Free Volumes in Polycrystalline BaGa2O4 Ceramics Doped with Eu3+ Ions. Crystals 2021, 11, 1515. [Google Scholar] [CrossRef]
- Ansari, M.A.; Sreenivas, K. Effects of disorder activated scattering and defect-induced phase on the ferroelectric properties of BaSnxTi1-xO3 (0 ≤ x ≤ 0.28) ceramics. Ceram. Int. 2019, 45, 20738–20749. [Google Scholar] [CrossRef]
- Xiaoyong, W.; Yujun, F.; Xi, Y. Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. Appl. Phys. Lett. 2003, 83, 2031–2033. [Google Scholar] [CrossRef]
- Zaitouni, H.; Hajji, L.; Mezzane, D.; Choukri, E.; Gagou, Y.; Hoummada, K.; Charai, A.; Alimoussa, A.; Rožič, B.; El Marssi, M.; et al. Structural, dielectric, ferroelectric and tuning properties of Pb-free ferroelectric Ba0.9Sr0.1Ti1-xSnxO3. Ceram. Int. 2020, 46, 27275–27282. [Google Scholar] [CrossRef]
- Kalyani, A.K.; Krishnan, H.; Sen, A.; Senyshyn, A.; Ranjan, R. Polarization switching and high piezoelectric response in Sn-modified BaTiO3. Phys. Rev. B 2015, 91, 024101. [Google Scholar] [CrossRef]
T (°C) | Space Group | Unit Cell Parameters | Phase Fraction (%) | χ2 | Rwp (%) | |||
---|---|---|---|---|---|---|---|---|
a(Å) | b(Å) | c(Å) | V(Å3) | |||||
20 | Amm2 | 4.0504 | 4.0399 | 5.6423 | 92.326 | 38.70 | 2.41 | 6.5 |
P4mm | 4.0230 | - | 4.0050 | 64.819 | 61.30 | |||
40 | Amm2 | 4.0475 | 4.0210 | 5.6440 | 91.855 | 15.37 | 2.26 | 8.3 |
P4mm | 4.0231 | - | 4.0041 | 64.806 | 84.63 | |||
60 | P4mm | 4.0120 | 4.0120 | 4.0266 | 64.813 | 35.74 | 2.24 | 6.2 |
Pm3m | 4.0511 | - | - | 64.484 | 64.26 | |||
80 | P4mm | 4.0140 | - | 4.0296 | 64.923 | 12.19 | 2.29 | 6.5 |
Pm3m | 4.0488 | - | - | 66.37 | 87.81 | |||
100 | Pm3m | 4.0201 | - | - | 64.967 | 100 | 2.33 | 8.2 |
120 | Pm3m | 4.0195 | - | - | 64.939 | 100 | 2.68 | 7.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Wang, Z.; Gao, S.; Zheng, H.; Luo, J.; Liu, Y.; Lyu, Y. Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics. Crystals 2025, 15, 600. https://doi.org/10.3390/cryst15070600
Qin Z, Wang Z, Gao S, Zheng H, Luo J, Liu Y, Lyu Y. Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics. Crystals. 2025; 15(7):600. https://doi.org/10.3390/cryst15070600
Chicago/Turabian StyleQin, Zhengchao, Zhiyi Wang, Si Gao, Hongjuan Zheng, Jin Luo, Yunfei Liu, and Yinong Lyu. 2025. "Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics" Crystals 15, no. 7: 600. https://doi.org/10.3390/cryst15070600
APA StyleQin, Z., Wang, Z., Gao, S., Zheng, H., Luo, J., Liu, Y., & Lyu, Y. (2025). Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics. Crystals, 15(7), 600. https://doi.org/10.3390/cryst15070600