Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Occurrence
2.2.1. Cruzeiro Mine (Brazil), Sample CRUZ1
2.2.2. Nuristan, Kunar (Afghanistan), Sample AF1
2.2.3. Malkhan Pegmatite Field (Russia), Sample RUSS1
2.3. Methods
2.3.1. Electron Microprobe Analysis (EMPA)
2.3.2. Micro-Laser Induced Breakdown Spectroscopy (μ-LIBS)
2.3.3. Single-Crystal X-Ray Diffraction (SC-XRD) and Structural Refinement (SREF)
3. Results
3.1. Chemical Analyses
3.1.1. EPMA Data
3.1.2. µ-LIBS
3.2. Crystal Structure Refinement
3.3. Determination of Site Population and Formulae
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawthorne, F.C.; Henry, D.J. Classification of the minerals of the tourmaline group. Eur. J. Mineral. 1999, 11, 201–216. [Google Scholar] [CrossRef]
- Agrosì, G.; Bosi, F.; Lucchesi, S.; Melchiorre, G.; Scandale, E. Mn-tourmaline crystals from island of Elba (Italy): Growth history and growth marks. Am. Mineral. 2006, 91, 944–952. [Google Scholar] [CrossRef]
- Andreozzi, G.B.; Gori, C.; Skogby, H.; Hålenius, U.; Altieri, A.; Bosi, F. Insights from the compositional evolution of a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Minas Gerais, Brazil. Eur. J. Mineral. 2025, 37, 1–12. [Google Scholar] [CrossRef]
- Rizzo, F.; Bosi, F.; Tempesta, G.; Agrosì, G. Compositional Variation and Crystal-Chemical Characterization of a Watermelon Variety of Tourmaline from Anjanabonoina, Central Madagascar. Crystals 2023, 13, 1290. [Google Scholar] [CrossRef]
- Pezzotta, F.; Laurs, B.M. Tourmaline: The Kaleidoscopic Gemstone. Elements 2011, 7, 333–338. [Google Scholar] [CrossRef]
- Katsurada, Y.; Sun, Z.; Breeding, C.M.; Dutrow, B.L. Geographic origin determination of Paraiba tourmaline. Gems Gemol. 2019, 55, 648–659. [Google Scholar] [CrossRef]
- Bosi, F.; Celata, B.; Skogby, H.; Hålenius, H.; Tempesta, G.; Ciriotti, M.; Bittarello, E.; Marengo, A. Mn-bearing purplish-red tourmaline from the Anjanabonoina pegmatite, Madagascar. Mineral. Mag. 2021, 85, 242–253. [Google Scholar] [CrossRef]
- Bosi, F.; Skogby, H. Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am. Mineral. 2013, 98, 1442–1448. [Google Scholar] [CrossRef]
- Suwanmanee, W.; Wanthanachaisaeng, B.; Utapong, T.; Sutthirat, C. Colour Enhancement of Pink Tourmaline from Nigeria by Electron-Beam and Gamma Irradiation. J. Gemmol. 2021, 37, 514–526. [Google Scholar] [CrossRef]
- Bosi, F.; Skogby, H.; Agrosì, G.; Scandale, E. Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. Am. Mineral. 2012, 97, 989–994. [Google Scholar] [CrossRef]
- Bosi, F.; Andreozzi, G.B.; Agrosì, G.; Scandale, E. Fluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineral. Mag. 2015, 79, 89–101. [Google Scholar] [CrossRef]
- Bilal, E.; César-Mendes, J.; Correia-Neves, J.M.; Nasraoui, M. Chemistry of some pegmatites of São José da Safira area, Minas Gerais, Brazil. Rev. Rom. Mat. 1997, 78, 4–6. [Google Scholar]
- Bilal, E.; César-Mendes, J.; Correia-Neves, J.M.; Nasraoui, M.; Fuzikawa, K. Chemistry of tourmalines in some pegmatites of São José da Safira area, Minas Gerais, Brazil. J. Geosci. 1998, 43, 33–38. [Google Scholar]
- Federico, M.; Andreozzi, G.B.; Lucchesi, S.; Graziani, G.; Cesar-Mendes, J. Crystal chemistry of tourmalines. I. Chemistry, compositional variations and coupled substitutions in the pegmatite dikes of the Cruzeiro mine, Minas Gerais, Brazil. Can. Mineral 1998, 36, 415–431. [Google Scholar]
- Dutrow, B.L.; Henry, D.J. Tourmaline: A geologic DVD. Elements 2011, 7, 301–306. [Google Scholar] [CrossRef]
- Arian, H.; Alaminia, Z.; Nero, M.A.; Haydari, A.; Shirzad, A. A review on Afghanistan pegmatite belt: Lithium reserves, challenges and prospects. Geopersia 2024. [Google Scholar] [CrossRef]
- Lyckberg, P. Gem pegmatites of northeastern Afghanistan. Mineral. Rec. 2017, 48, 611–675. [Google Scholar]
- Kynický, J.; Krejsek, Š. Discovery of New Gem Tourmaline Pockets in the Sosedka Pegmatite, Malkhan, Russia. Rocks Miner. 2013, 88, 308–315. [Google Scholar] [CrossRef]
- Zagorsky, V.E.; Peretyazhko, I.S. First 40Ar/39Ar age determinations on the Malkhan granite-pegmatite system: Geodynamic implications. Dokl. Earth Sci. 2010, 430, 172–175. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation; Springer: Boston, MA, USA, 1991; pp. 31–75. [Google Scholar]
- Altieri, A.; Luppi, R.; Skogby, H.; Hålenius, U.; Tempesta, G.; Pezzotta, F.; Bosi, F. Thermal treatment of the tourmaline Fe-rich princivalleite Na(Mn2Al)Al6(Si6O18)(BO3)3(OH)3O. Phys. Chem. Miner. 2023, 50, 27. [Google Scholar] [CrossRef]
- Bosi, F.; Pezzotta, F.; Altieri, A.; Andreozzi, G.B.; Ballirano, P.; Tempesta, G.; Cempírek, J.; Škoda, R.; Filip, J.; Čopjaková, R.; et al. Celleriite, ☐(Mn2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH), a new mineral species of the tourmaline supergroup. Am. Mineral. 2022, 107, 31–42. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Seo, J.; Park, J. Electronic and vibrational spectra of tourmaline: The impact of electron beam irradiation and heat treatment. Vib. Spectrosc. 2013, 65, 165–175. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- MacDonald, D.J.; Hawthorne, F.C. The crystal chemistry of Si<--> Al substitution in tourmaline. Can. Mineral. 1995, 33, 849–858. [Google Scholar]
- Bosi, F.; Lucchesi, S. Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. Am. Mineral. 2007, 92, 1054–1063. [Google Scholar] [CrossRef]
- Grice, J.D.; Ercit, T.S. Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula. Neues Jahrb. Mineral. Abhandlungen 1993, 165, 245–266. [Google Scholar]
- Ertl, A.; Hughes, J.M.; Pertlik, F.; Foit, F.F., Jr.; Wright, S.E.; Brandstätter, F.; Marler, B. Polyhedron distortions in tourmaline. Can. Mineral. 2002, 40, 153–162. [Google Scholar] [CrossRef]
- Cempírek, J.; Novák, M.; Ertl, A.; Hughes, J.M.; Rossman, G.R.; Dyar, M.D. Fe-bearing olenite with tetrahedrally coordinated Al from an abyssalpegmatite at Kutná Hora, CzechRepublic: Structure, crystal chemistry, optical spectra and XANES spectra. Can. Mineral. 2006, 44, 23–30. [Google Scholar] [CrossRef]
- Ertl, A.; Kolitsch, U.; Dyar, M.D.; Hughes, J.M.; Rossman, G.R.; Pieczka, A.; Henry, D.J.; Pezzotta, F.; Prowatke, S.; Lengauer, C.L.; et al. Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+ and Mn2+-rich tourmaline. Am. Mineral. 2013, 98, 2183–2192. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, M. Gem Elbaite as a Recorder of Pegmatite Evolution: In Situ Major, Trace Elements and Boron Isotope Analysis of a Colour-Zoning Tourmaline Crystal. Crystals 2021, 11, 1363. [Google Scholar] [CrossRef]
- McMillan, N.J.; Curry, J.; Dutrow, B.L.; Henry, D.J. Identification of the Host Lithology of Tourmaline Using Laser-Induced Breakdown Spectroscopy for Application in Sediment Provenance and Mineral Exploration. Can. Mineral. 2018, 56, 393–410. [Google Scholar] [CrossRef]
- Xu, R.; Romer, R.L.; Deng, J. Tourmaline compositions trace the sources of metals in the Tangziwa Sn-Cu deposit, Gejiu ore district, China. Ore Geol. Rev. 2025, 180, 106535. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Z.; Mo, X.; Dong, G.; Li, X.; Yuan, W.; Wang, T.; Wang, B.; Pan, T.; Han, J.; et al. Tourmaline as an indicator for pegmatite evolution and exploration: A case study from the Chakabeishan deposit, northeastern Tibetan Plateau. Ore Geol. Rev. 2024, 165, 105892. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.; Chen, X.; Sun, Y.; Liu, S. Tourmaline geochemical and boron isotopic constraints on the magmatic-hydrothermal transition and Li mineralization in LCT-type pegmatites. GSA Bull. 2025. [Google Scholar] [CrossRef]
- Zagorsky, V.; Peretyazhko, I. The Malkhan granite-pegmatite system. Dokl. Earth Sci. 2006, 406, 132–135. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Zagorsky, V.Y.; Smirnov, S.Z.; Michailov, M.Y. Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia). Chem. Geol. 2004, 210, 91–111. [Google Scholar] [CrossRef]
CRUZ1 Core | CRUZ1 Rim | RUSS1 | AF1 | |
---|---|---|---|---|
Crystal data | ||||
Size (mm) | 0.24 × 0.28 × 0.32 | 0.20 × 0.25 × 0.40 | 0.04 × 0.40 × 0.40 | 0.26 × 0.30 × 0.30 |
Space group; Z | R3m, 3 | |||
a (Å) | 15.84606(19) | 15.8344(3) | 15.8279(2) | 15.8317(2) |
c (Å) | 7.10555(9) | 7.1005(2) | 7.1014(1) | 7.1034(1) |
V (Å3) | 1545.15(4) | 1541.78(7) | 1540.71(4) | 1541.88(4) |
Data collection | ||||
Data collection temperature (K) | 293 | |||
Range for data collection, 2θ (°) | 5–75 | |||
Radiation, wavelength (Å) | MoKα, 0.71073 | |||
Reciprocal space range, hkl | −25 ≤ h ≤ 21 | −26 ≤ h ≤ 26 | −23 ≤ h ≤ 27 | −26 ≤ h ≤ 26 |
−26 ≤ k ≤ 26 | −27 ≤ k ≤ 26 | −26 ≤ k ≤ 26 | −23 ≤ k ≤ 26 | |
−11 ≤ l ≤ 12 | −9 ≤ l ≤ 11 | −8 ≤ l ≤ 9 | −10 ≤ l ≤ 12 | |
Measured reflections | 11,595 | 11,502 | 11,573 | 11,543 |
Unique reflections, Rint | 1846, 0.0211 | 1760, 0.0157 | 1663, 0.0205 | 1811, 0.0233 |
Redundancy | 12 | |||
Absorption correction method | Multi-scan (SADABS) | |||
Refinement | ||||
Refinement method | Full-matrix last-squares on F2 | |||
Structural refinement program | SHELXL-2013 | |||
Extinction coefficient | 0.0073(4) | 0.0040(3) | 0.0051(3) | 0.0014(3) |
Flack parameter | 0.02(10) | 0.09(8) | 0.07(8) | 0.01(10) |
wR2 | 0.0401 | 0.0358 | 0.0334 | 0.0403 |
R1 all data | 0.0159 | 0.0135 | 0.0138 | 0.0160 |
R1 for I > 2σ(I) | 0.0158 | 0.0134 | 0.0137 | 0.0158 |
GooF | 1.124 | 1.129 | 1.148 | 1.174 |
CRUZ1 Rim | CRUZ1 Core | RUSS1 | AF1 | |
---|---|---|---|---|
< X–O > | 2.664 | 2.662 | 2.650 | 2.664 |
< Y–O > | 2.006 | 2.011 | 2.012 | 2.008 |
< Z–O > | 1.905 | 1.906 | 1.905 | 1.905 |
< B–O > | 1.375 | 1.375 | 1.375 | 1.374 |
< T–O > | 1.617 | 1.618 | 1.616 | 1.616 |
Average of 4 Spots (wt%) | Average of 36 Spots (wt%) | Average of 10 Spots (wt%) | Average of 10 Spots (wt%) | |
---|---|---|---|---|
CRUZ1 rim | CRUZ1 Core | RUSS1 | AF1 | |
SiO2 | 39.07(21) | 39.06(29) | 39.09(38) | 39.18(17) |
TiO2 | 0.02 | 0.01(2) | 0.01 | 0.00 |
B2O3 (a) | 11.52 | 11.20 | 11.05 | 11.20 |
Al2O3 | 40.72 | 40.56 | 40.67(41) | 41.17(10) |
FeOtot | 0.03 | 0.02 | 0.01(1) | 0.03(2) |
MnOtot (b) tot | 0.63(39) | 0.12(4) | 0.23(10) | 0.18(7) |
CaO | 0.12 | 0.25(6) | 1.36(42) | 0.09(4) |
Na2O | 1.74(1) | 1.77(5) | 1.51(13) | 1.85(4) |
Li2O (c) | 2.16(2) | 2.27(2) | 2.02(14) | 2.20(15) |
F | 0.56(2) | 0.66(12) | 1.01(16) | 0.58(12) |
H2O (a) | 3.45 | 3.63 | 2.87 | 3.59 |
O = F | −0.236 | −0.28 | −0.42 | −0.29 |
Total | 99.84 | 99.30 | 99.43 | 99.87 |
Atoms normalized to 31 anions | ||||
Si (apfu) | 6.08 | 6.09 | 6.15 | 6.09 |
Ti4+ | 0.00 | 0.00 | 0.00 | 0.00 |
B | 3.00 | 3.00 | 3.00 | 3.00 |
Al | 7.47 | 7.46 | 7.54 | 7.54 |
Fe2+ | 0.01 | 0.00 | 0.00 | 0.00 |
Mn2+ | 0.08 | 0.02 | 0.03 | 0.02 |
Ca | 0.02 | 0.04 | 0.23 | 0.02 |
Na | 0.53 | 0.54 | 0.46 | 0.56 |
Li | 1.35 | 1.42 | 1.28 | 1.37 |
F | 0.28 | 0.33 | 0.50 | 0.28 |
OH | 3.58 | 3.67 | 3.01 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, F.; Bosi, F.; Tempesta, G.; Iommazzo, F.; Agrosì, G. Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces. Crystals 2025, 15, 415. https://doi.org/10.3390/cryst15050415
Rizzo F, Bosi F, Tempesta G, Iommazzo F, Agrosì G. Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces. Crystals. 2025; 15(5):415. https://doi.org/10.3390/cryst15050415
Chicago/Turabian StyleRizzo, Floriana, Ferdinando Bosi, Gioacchino Tempesta, Federica Iommazzo, and Giovanna Agrosì. 2025. "Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces" Crystals 15, no. 5: 415. https://doi.org/10.3390/cryst15050415
APA StyleRizzo, F., Bosi, F., Tempesta, G., Iommazzo, F., & Agrosì, G. (2025). Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces. Crystals, 15(5), 415. https://doi.org/10.3390/cryst15050415