Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Alla, R.R.; Kandipati, R.; Kotapati, A. Super capacitors for energy storage: Progress, applications and challenges. J. Energy Storage 2022, 49, 104194. [Google Scholar] [CrossRef]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef] [PubMed]
- Tatrari, G.; Karakoti, M.; Tewari, C.; Pandey, S.; Bohra, B.S.; Dandapat, A.; Sahoo, N.G. Solid waste-derived carbon nanomaterials for supercapacitor applications: A recent overview. Mater. Adv. 2021, 2, 1454–1484. [Google Scholar] [CrossRef]
- Yadav, S.; Daniel, S. Green synthesis of zero-dimensional carbon nanostructures in energy storage applications—A review. Energy Storage 2024, 6, e500. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, F.-G.; Liu, L.-N.; Xu, Z.-W.; Xie, G.; Li, J.; Gao, T.; Li, W.; Li, W.-S. Carbon Nanomaterials-Enabled High-Performance Supercapacitors: A Review. Adv. Energy Sustain. Res. 2023, 4, 2200152. [Google Scholar] [CrossRef]
- Xu, Q.; Niu, Y.; Li, J.; Yang, Z.; Gao, J.; Ding, L.; Ni, H.; Zhu, P.; Liu, Y.; Tang, Y.; et al. Recent progress of quantum dots for energy storage applications. Carbon Neutrality 2022, 1, 13. [Google Scholar] [CrossRef]
- Liao, S.-Y.; Chen, J.; Cui, S.-F.; Shang, J.-Q.; Li, Y.-Z.; Cheng, W.-X.; Liu, Y.-D.; Cui, T.-T.; Shu, X.-G.; Min, Y.-G. CoS2 enhanced SnO2@rGO heterostructure quantum dots for advanced lithium-ion battery anode. J. Power Sources 2023, 553, 232265. [Google Scholar] [CrossRef]
- Yadav, M.S. Metal oxides nanostructure-based electrode materials for supercapacitor application. J. Nanoparticle Res. 2020, 22, 367. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Hassan, S.; Ashry, A.G.; Hegazy, M. Facile, Efficient, and Cheap Electrode based on SnO2/Activated Carbon Waste for Supercapacitor and Capacitive Deionization Applications. ACS Omega 2022, 7, 19714–19720. [Google Scholar] [CrossRef]
- Wang, B.; Guan, D.; Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Liu, L. Preparation of graphene nanosheets/SnO2 composites by pre-reduction followed by in-situ reduction and their electrochemical performances. Mater. Chem. Phys. 2013, 141, 1–8. [Google Scholar] [CrossRef]
- Kumar, R.; Nekouei, R.K.; Sahajwalla, V. In-situ carbon-coated tin oxide (ISCC-SnO2) for micro-supercapacitor applications. Carbon Lett. 2020, 30, 699–707. [Google Scholar] [CrossRef]
- Selvan, R.K.; Perelshtein, I.; Perkas, N.; Gedanken, A. Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors. J. Phys. Chem. C 2008, 112, 1825–1830. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, S.; Song, X.; Guo, Y.; Si, D.; Jing, H.; Ma, S.; Hao, C.; Ji, M. Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochim. Acta 2016, 209, 350–359. [Google Scholar] [CrossRef]
- Kedara Shivasharma, T.; Sahu, R.; Rath, M.C.; Keny, S.J.; Sankapal, B.R. Exploring tin oxide based materials: A critical review on synthesis, characterizations and supercapacitive energy storage. Chem. Eng. J. 2023, 477, 147191. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Liu, D.; Liu, L.; Chen, H.; Hu, Q.; Liu, X.; Zhou, A. SnO2 Quantum Dots Interspersed d-Ti3C2Tx MXene Heterostructure with Enhanced Performance for Lithium Ion Battery. J. Electrochem. Soc. 2020, 167, 116522. [Google Scholar] [CrossRef]
- Neelakanta Reddy, I.; Akkinepally, B.; Siva Kumar, N.; Asif, M.; Shim, J.; Bai, C. SnO2 nanoparticles anchored on carbon spheres for enhanced charge generation and potentiodynamic effects. J. Electroanal. Chem. 2023, 937, 117411. [Google Scholar] [CrossRef]
- Geng, J.; Ma, C.; Zhang, D.; Ning, X. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J. Alloys Compd. 2020, 825, 153850. [Google Scholar] [CrossRef]
- Vargheese, S.; Kumar, R.S.; Kumar, R.T.R.; Shim, J.J.; Haldorai, Y. Binary metal oxide (MnO2/SnO2) nanostructures supported triazine framework-derived nitrogen-doped carbon composite for symmetric supercapacitor. J. Energy Storage 2023, 68, 9. [Google Scholar] [CrossRef]
- Veeresh, S.; Ganesha, H.; Nagaraju, Y.S.; Vijeth, H.; Devendrappa, H. Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application. J. Alloys Compd. 2023, 952, 11. [Google Scholar] [CrossRef]
- Babu, B.; Babu Eadi, S.; Yoo, J.; Lee, H.-D.; Yoo, K. Core@shell nanorods for enhancing supercapacitor performance: ZnWO4 nanorods decorated with colloidal SnO2 quantum dots. Mater. Lett. 2023, 343, 134389. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Z.; Zhang, Z.; Zhang, L.; Xue, Y.; Yang, J.; Peng, C. Rational construction of well-defined hollow double shell SnO2/mesoporous carbon spheres heterostructure for supercapacitors. J. Alloys Compd. 2021, 873, 159810. [Google Scholar] [CrossRef]
- Ren, S.; Yang, Y.; Xu, M.; Cai, H.; Hao, C.; Wang, X. Hollow SnO2 microspheres and their carbon-coated composites for supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 26–32. [Google Scholar] [CrossRef]
- He, C.; Xiao, Y.; Dong, H.; Liu, Y.; Zheng, M.; Xiao, K.; Liu, X.; Zhang, H.; Lei, B. Mosaic-Structured SnO2@C Porous Microspheres for High-Performance Supercapacitor Electrode Materials. Electrochim. Acta 2014, 142, 157–166. [Google Scholar] [CrossRef]
- Mu, J.; Chen, B.; Guo, Z.; Zhang, M.; Zhang, Z.; Shao, C.; Liu, Y. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. J. Colloid Interface Sci. 2011, 356, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Martinez, E.; Sanchez-Rodriguez, C.E.; Sanchez-Vasquez, J.D.; Reyes-Reyes, M.; López-Sandoval, R. Synthesis of carbon spheres from glucose using the hydrothermal carbonization method for the fabrication of EDLCs. Diam. Relat. Mater. 2023, 136, 110010. [Google Scholar] [CrossRef]
- Phattharasupakun, N.; Wutthiprom, J.; Suktha, P.; Iamprasertkun, P.; Chanlek, N.; Shepherd, C.; Hadzifejzovic, E.; Moloney, M.; Foord, J.S.; Sawangphruk, M. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochim. Acta 2017, 238, 64–73. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, J.; Zhang, Y.; Lu, L.; Chai, Y.; Yuan, R.; Yang, X. Ion exchange for synthesis of porous CuxO/SnO2/ZnSnO3 microboxes as a high-performance lithium-ion battery anode. New J. Chem. 2018, 42, 12008–12012. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.; Xu, J. Synthesis of Ag–Ho, Ag–Sm, Ag–Zn, Ag–Cu, Ag–Cs, Ag–Zr, Ag–Er, Ag–Y and Ag–Co metal organic nanoparticles for UV-Vis-NIR wide-range bio-tissue imaging. Photochem. Photobiol. Sci. 2019, 18, 1081–1091. [Google Scholar] [CrossRef]
- Cao, Y.; He, T.; Zhao, L.; Wang, E.; Yang, W.; Cao, Y. Structure and phase transition behavior of Sn4+-doped TiO2 nanoparticles. J. Phys. Chem. C 2009, 113, 18121–18124. [Google Scholar] [CrossRef]
- Sahu, B.K.; Das, A. Significance of oxygen defects in SnO2 quantum dots as hybrid electrochemical capacitors. J. Phys. Chem. Solids 2019, 129, 293–297. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Sankar, G.U.; Balamurugan, K.; Yuvakkumar, R.; Thambidurai, M.; Ravi, G. Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 2020, 31, 101530. [Google Scholar] [CrossRef]
- Babu, B.; Harish, V.V.N.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-active photocatalytic performance using CdS nanorods decorated with colloidal SnO2 quantum dots: Optimization of core–shell nanostructure. J. Ind. Eng. Chem. 2019, 76, 476–487. [Google Scholar] [CrossRef]
- Thirumal, V.; Rajkumar, P.; Babu, B.; Kim, J.-H.; Yoo, K. Performance of asymmetric hybrid supercapacitor device based on antimony-titanium carbide MXene composite. J. Alloys Compd. 2024, 982, 173598. [Google Scholar] [CrossRef]
- Babu, B.; Kim, J.; Yoo, K. Improved solar light-driven photoelectrochemical performance of cadmium sulfide-tin oxide quantum dots core-shell nanorods. Mater. Lett. 2020, 274, 128005. [Google Scholar] [CrossRef]
- Xiao, X.; Han, B.; Chen, G.; Wang, L.; Wang, Y. Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 2017, 7, 40167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salunkhe, T.T.; Bathula, B.; Kim, I.T.; Thirumal, V.; Yoo, K. Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals 2024, 14, 482. https://doi.org/10.3390/cryst14060482
Salunkhe TT, Bathula B, Kim IT, Thirumal V, Yoo K. Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals. 2024; 14(6):482. https://doi.org/10.3390/cryst14060482
Chicago/Turabian StyleSalunkhe, Tejaswi Tanaji, Babu Bathula, Il Tae Kim, Vediyappan Thirumal, and Kisoo Yoo. 2024. "Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots" Crystals 14, no. 6: 482. https://doi.org/10.3390/cryst14060482
APA StyleSalunkhe, T. T., Bathula, B., Kim, I. T., Thirumal, V., & Yoo, K. (2024). Enhanced Supercapacitor Performance by Harnessing Carbon Nanoparticles and Colloidal SnO2 Quantum Dots. Crystals, 14(6), 482. https://doi.org/10.3390/cryst14060482