The Effects of Annealing Temperatures and Dimethylformamide Doses on Porous TiO2 Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiO2 Solution and TiO2 Thin Films
2.2. Characteristic Measurement
3. Results and Discussion
3.1. Effect of Solvent
3.2. Effect of Annealing
3.3. Effect of Comprehensive Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, K.; Jung, S.; Son, H.; Jang, K.; Lee, J.; Park, H.; Kim, J.; Kim, K.; Yi, J. Application of a Gate Blocking Layer on Glass by Using TiO2 as a High-k Material for a Nonvolatile Memory. J. Korean Phys. Soc. 2008, 52, 1863–1867. [Google Scholar] [CrossRef]
- Liu, J.W.; Liao, M.Y.; Imura, M.; Banal, R.G.; Koide, Y. Deposition of TiO2/Al2O3 Bilayer on Hydrogenated Diamond for Electronic Devices: Capacitors, Field-Effect Transistors, and Logic Inverters. J. Appl. Phys. 2017, 121, 224502. [Google Scholar] [CrossRef]
- Hu, C.; McDaniel, M.D.; Posadas, A.; Demkov, A.A.; Ekerdt, J.G.; Yu, E.T. Highly Controllable and Stable Quantized Conductance and Resistive Switching Mechanism in Single-Crystal TiO2 Resistive Memory on Silicon. Nano Lett. 2014, 14, 4360–4367. [Google Scholar] [CrossRef]
- Geiger, M.; Lingstädt, R.; Wollandt, T.; Deuschle, J.; Zschieschang, U.; Letzkus, F.; Burghartz, J.N.; Aken, P.A.; Weitz, R.T.; Klauk, H. Subthreshold Swing of 59 MV Decade−1 in Nanoscale Flexible Ultralow-Voltage Organic Transistors. Adv. Electron. Mater. 2022, 8, 2101215. [Google Scholar] [CrossRef]
- Chu, Y.-M.; Lin, C.-C.; Chang, H.-C.; Li, C.; Guo, C. TiO2 Nanowire FET Device: Encapsulation of Biomolecules by Electro Polymerized Pyrrole Propylic Acid. Biosens. Bioelectron. 2011, 26, 2334–2340. [Google Scholar] [CrossRef]
- Lo, S.-Y.; Wuu, D.-S.; Chang, C.-H.; Wang, C.-C.; Lien, S.-Y.; Horng, R.-H. Fabrication of Flexible Amorphous-Si Thin-Film Solar Cells on a Parylene Template Using a Direct Separation Process. IEEE Trans. Electron Devices 2011, 58, 1433–1439. [Google Scholar] [CrossRef]
- Yang, C.-H.; Lien, S.-Y.; Chu, C.-H.; Kung, C.-Y.; Cheng, T.-F.; Chen, P.-T. Effectively Improved SiO2-TiO2 Composite Films Applied in Commercial Multicrystalline Silicon Solar Cells. Int. J. Photoenergy 2013, 2013, 823254. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-S.; Lien, S.-Y.; Wuu, D.-S.; Huang, Y.-X.; Kung, C.-Y. Improvement in Performance of Si-Based Thin Film Solar Cells with a Nanocrystalline SiO2-TiO2 Layer. Thin Solid Films 2014, 570, 200–203. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chen, K.-T.; Huang, P.-H.; Wu, W.-Y.; Zhang, X.-Y.; Wang, C.; Liang, L.-S.; Gao, P.; Qiu, Y.; Lien, S.-Y.; et al. Effect of Annealing Temperature on Spatial Atomic Layer Deposited Titanium Oxide and Its Application in Perovskite Solar Cells. Nanomaterials 2020, 10, 1322. [Google Scholar] [CrossRef]
- Huang, P.-H.; Huang, C.-W.; Kang, C.-C.; Hsu, C.-H.; Lien, S.-Y.; Wang, N.-F.; Huang, C.-J. The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells. Crystals 2020, 10, 236. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chen, K.-T.; Liang, L.-S.; Gao, P.; Ou, S.-L.; Wu, W.-Y.; Huang, P.-H.; Lien, S.-Y. Improved Perovskite Solar Cell Performance by High Growth Rate Spatial Atomic Layer Deposited Titanium Oxide Compact Layer. IEEE J. Electron Devices Soc. 2021, 9, 49–56. [Google Scholar] [CrossRef]
- Latif, H.; Azher, Z.; Shabbir, S.A.; Rasheed, S.; Pervaiz, E.; Sattar, A.; Imtiaz, A. A Novel Leaves and Needles like TiO2 (LNT) Electron Transfer Layer (ETL) as an Alternative to Meso-Porous TiO2 Electron Transfer Layer (ETL) in Perovskite Solar Cell. Opt. Mater. 2020, 109, 110281. [Google Scholar] [CrossRef]
- Murugadoss, G.; Mizuta, G.; Tanaka, S.; Nishino, H.; Umeyama, T.; Imahori, H.; Ito, S. Double Functions of Porous TiO2 Electrodes on CH3NH3PbI3 Perovskite Solar Cells: Enhancement of Perovskite Crystal Transformation and Prohibition of Short Circuiting. APL Mater. 2014, 2, 081511. [Google Scholar] [CrossRef] [Green Version]
- Karunagaran, B.; Uthirakumar, P.; Chung, S.J.; Velumani, S.; Suh, E.-K. TiO2 Thin Film Gas Sensor for Monitoring Ammonia. Mater. Charact. 2007, 58, 680–684. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Tereshchenko, A.; Karpicz, R.; Ratautaite, V.; Bubniene, U.; Maneikis, A.; Jagminas, A.; Ramanavicius, A. TiO2-x/TiO2-Structure Based ‘Self-Heated’ Sensor for the Determination of Some Reducing Gases. Sensors 2019, 20, 74. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-Z.; Ko, W.-Y.; Yen, Y.-C.; Chen, P.-H.; Lin, K.-J. Hydrothermally Processed TiO2 Nanowire Electrodes with Antireflective and Electrochromic Properties. ACS Nano 2012, 6, 6633–6639. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, K.-W.; In, Y.R.; Tang, X.; Kim, P.; Quy, V.H.V.; Kim, Y.M.; Lee, J.; Choi, C.; Jung, C.; et al. Multicolor, Dual-Image, Printed Electrochromic Displays Based on Tandem Configuration. Chem. Eng. J. 2022, 429, 132319. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Li, D.; Bulou, S.; Gautier, N.; Elisabeth, S.; Goullet, A.; Richard-Plouet, M.; Choquet, P.; Granier, A. Nanostructure and Photocatalytic Properties of TiO2 Films Deposited at Low Temperature by Pulsed PECVD. Appl. Surf. Sci. 2019, 466, 63–69. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, Y.H.; Ko, K.H. Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films. Langmuir 2000, 16, 7289–7293. [Google Scholar] [CrossRef]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic Properties of TiO2@polymer and TiO2@carbon Aerogel Composites Prepared by Atomic Layer Deposition. Carbon 2019, 147, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Wang, H.-E.; Jin, J.; Cai, Y.; Xu, J.-M.; Chen, D.-S.; Zheng, X.-F.; Deng, Z.; Li, Y.; Bello, I.; Su, B.-L. Facile and Fast Synthesis of Porous TiO2 Spheres for Use in Lithium Ion Batteries. J. Colloid Interface Sci. 2014, 417, 144–151. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.L.; Trindade, F.J.; Dalmasso, J.-L.; Ramos, B.; Teixeira, A.C.S.C.; Gouvêa, D. Synthesis of TiO2 Microspheres by Ultrasonic Spray Pyrolysis and Photocatalytic Activity Evaluation. Ceram. Int. 2022, 48, 9739–9745. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and Applications of Nano-TiO2: A Review. Environ. Sci. Pollut. Res. 2019, 26, 3262–3291. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Xiong, J.; Wu, F.; Liu, Q.; Shi, Z.; Yu, Y.; Wang, X.; Li, L. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239–12245. [Google Scholar] [CrossRef]
- Lupu, A. Combined In Vitro Effects of TiO2 Nanoparticles and Dimethyl Sulfoxide (DMSO) on HepG2 Hepatocytes. Int. J. Nanomater. Nanotechnol. Nanomed. 2015, 1, 002–010. [Google Scholar] [CrossRef] [Green Version]
- You, M.S.; Heo, J.H.; Park, J.K.; Moon, S.H.; Park, B.J.; Im, S.H. Low Temperature Solution Processable TiO2 Nano-Sol for Electron Transporting Layer of Flexible Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2019, 194, 1–6. [Google Scholar] [CrossRef]
- Guai, G.H.; Song, Q.L.; Lu, Z.S.; Ng, C.M.; Li, C.M. Tailor and Functionalize TiO2 Compact Layer by Acid Treatment for High Performance Dye-Sensitized Solar Cell and Its Enhancement Mechanism. Renew. Energy 2013, 51, 29–35. [Google Scholar] [CrossRef]
- Sarraf, M.; Nasiri-Tabrizi, B.; Yeong, C.H.; Madaah Hosseini, H.R.; Saber-Samandari, S.; Basirun, W.J.; Tsuzuki, T. Mixed Oxide Nanotubes in Nanomedicine: A Dead-End or a Bridge to the Future? Ceram. Int. 2021, 47, 2917–2948. [Google Scholar] [CrossRef]
- Sun, W.; Liu, H.; Hu, J.; Li, J. Controllable Synthesis and Morphology-Dependent Photocatalytic Performance of Anatase TiO2 Nanoplates. RSC Adv. 2015, 5, 513–520. [Google Scholar] [CrossRef]
- Yao, M.; Ji, Y.; Wang, H.; Ao, Z.; Li, G.; An, T. Adsorption Mechanisms of Typical Carbonyl-Containing Volatile Organic Compounds on Anatase TiO2 (001) Surface: A DFT Investigation. J. Phys. Chem. C 2017, 121, 13717–13722. [Google Scholar] [CrossRef]
- Feng, X.; Li, Z. Photocatalytic Promoting Dimethylformamide (DMF) Decomposition to in-Situ Generation of Self-Supplied CO for Carbonylative Suzuki Reaction. J. Photochem. Photobiol. A Chem. 2017, 337, 19–24. [Google Scholar] [CrossRef]
- Ma, T.; Tadaki, D.; Sakuraba, M.; Sato, S.; Hirano-Iwata, A.; Niwano, M. Effects of Interfacial Chemical States on the Performance of Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 4392–4397. [Google Scholar] [CrossRef]
- de Oliveira, C.V.; Migot, S.; Alhussein, A.; Jiménez, C.; Schuster, F.; Ghanbaja, J.; Sanchette, F. Structural and Microstructural Analysis of Bifunctional TiO2/Al-Zr Thin Film Deposited by Hybrid Process. Thin Solid Films 2020, 709, 138255. [Google Scholar] [CrossRef]
- Ghazaryan, L.; Handa, S.; Schmitt, P.; Beladiya, V.; Roddatis, V.; Tünnermann, A.; Szeghalmi, A. Structural, Optical, and Mechanical Properties of TiO2 Nanolaminates. Nanotechnology 2021, 32, 095709. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Tsunobuchi, Y.; Matsuda, T.; Hashimoto, K.; Namai, A.; Hakoe, F.; Tokoro, H. Synthesis of a Metal Oxide with a Room-Temperature Photoreversible Phase Transition. Nat. Chem. 2010, 2, 539–545. [Google Scholar] [CrossRef]
- Anuchai, S.; Phanichphant, S.; Tantraviwat, D.; Pluengphon, P.; Bovornratanaraks, T.; Inceesungvorn, B. Low Temperature Preparation of Oxygen-Deficient Tin Dioxide Nanocrystals and a Role of Oxygen Vacancy in Photocatalytic Activity Improvement. J. Colloid Interface Sci. 2018, 512, 105–114. [Google Scholar] [CrossRef]
- Kassiba, A.; Pattier, B.; Henderson, M.; Makowska-Janusik, M.; Mei, P.; Gibaud, A. Titanium Oxide Based Mesoporous Powders and Gels: Doping Effects and Photogenerated Charge Transfer. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2012, 177, 1446–1451. [Google Scholar] [CrossRef]
- Tański, T.; Matysiak, W. Synthesis of the Novel Type of Bimodal Ceramic Nanowires from Polymer and Composite Fibrous Mats. Nanomaterials 2018, 8, 179. [Google Scholar] [CrossRef]
- de Farias, F.R.; Silva, C.C.G.; Restivo, T.A.G. Thermal Study of the Anatase-Rutile Structural Transitions in Sol-Gel Synthesized Titanium Dioxide Powders. J. Serb. Chem. Soc. 2005, 70, 675–679. [Google Scholar] [CrossRef]
- Santara, B.; Giri, P.K.; Imakita, K.; Fujii, M. Microscopic Origin of Lattice Contraction and Expansion in Undoped Rutile TiO2 Nanostructures. J. Phys. D Appl. Phys. 2014, 47, 215302. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.M.E.; Arof, A.K. FTIR Studies of DMF Plasticized Polyvinyledene Fluoride Based Polymer Electrolytes. Electrochim. Acta 2000, 45, 1701–1706. [Google Scholar] [CrossRef]
- Mechiakh, R.; Sedrine, N.B.; Chtourou, R.; Bensaha, R. Correlation between Microstructure and Optical Properties of Nano-Crystalline TiO2 Thin Films Prepared by Sol-Gel Dip Coating. Appl. Surf. Sci. 2010, 257, 670–676. [Google Scholar] [CrossRef]
- Gomez-Hermoso-de-Mendoza, J.; Gutierrez, J.; Tercjak, A. Improvement of Macroscale Properties of TiO2/Cellulose Acetate Hybrid Films by Solvent Vapour Annealing. Carbohydr. Polym. 2020, 231, 115683. [Google Scholar] [CrossRef]
- Estruga, M.; Domingo, C.; Domènech, X.; Ayllón, J.A. Low Temperature N, N-Dimethylformamide-Assisted Synthesis and Characterization of Anatase-Rutile Biphasic Nanostructured Titania. Nanotechnology 2009, 20, 125604. [Google Scholar] [CrossRef]
- Luka, G.; Witkowski, B.S.; Wachnicki, L.; Andrzejczuk, M.; Lewandowska, M.; Godlewski, M. Kinetics of Anatase Phase Formation in TiO2 Films during Atomic Layer Deposition and Post-Deposition Annealing. Crystengcomm 2013, 15, 9949. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601. [Google Scholar] [CrossRef]
Parameter | Value | Units | Note |
---|---|---|---|
Deionized water | 3 | mL | |
2 Nanopowder TiO2 | 2 | G | Sigma-Aldrich CAS No. 13463-67-7 |
Triton-100; 1 dM = 1.06 g·cm−3 | 100 | μL | Sigma-Aldrich purity: 3 CP |
Acetylacetone; 1 dM = 0.973 g·mL−1 | 100 | μL | Sigma-Aldrich purity: 3 GC |
DMF solvent | 0 to 10 (0, 2.5, 5, 7.5, and 10) | wt% | Sigma-Aldrich purity: 3 AR |
Spin speed | 3000 | rpm | |
Spin time | 60 | s | |
Film growing temperature | 180 | °C | |
Annealing temperature | 300 to 500 | °C | |
(300, 350, 400, 450, and 500) |
Annealing Temperatures (°C) | Peak Position (°) | (101) Plane | ||||
---|---|---|---|---|---|---|
β | đ | D | ɛ × 10−3 | δ × 10−3 | ||
(°) | (Å) | (nm) | (nm−2) | |||
300 | 25.38 | 0.223 | 3.5093 | 36.545 | 4.3212 | 0.7488 |
350 | 25.32 | 0.178 | 3.5229 | 45.775 | 3.4633 | 0.4772 |
400 | 25.32 | 0.242 | 3.5174 | 33.672 | 4.7008 | 0.8820 |
450 | 25.34 | 0.223 | 3.5147 | 36.542 | 4.3282 | 0.7489 |
500 | 25.34 | 0.305 | 3.5147 | 26.718 | 5.9197 | 1.4009 |
Sample | Carbon | Nitrogen | Oxygen | Titanium | O/Ti (Atomic Ratio) | |||||
---|---|---|---|---|---|---|---|---|---|---|
DMF | Temp. | at% | wt% | at% | wt% | at% | wt% | at% | wt% | |
without 7.5 wt% | 350 °C | 8.9 | 4.4 | 0 | 0 | 62.9 | 40.8 | 28.2 | 54.8 | 2.2 |
with 7.5 wt% | 300 °C | 10.2 | 4.7 | 0 | 0 | 57.7 | 35.7 | 32.2 | 59.6 | 1.8 |
350 °C | 10.3 | 4.8 | 0 | 0 | 58.2 | 36.3 | 31.5 | 58.9 | 1.9 | |
400 °C | 9.5 | 4.4 | 0 | 0 | 58.6 | 36.4 | 31.9 | 59.2 | 1.8 | |
450 °C | 10.5 | 5.3 | 0 | 0 | 63.2 | 42.1 | 26.3 | 52.6 | 2.4 | |
500 °C | 7.6 | 3.4 | 0 | 0 | 57.6 | 34.4 | 34.8 | 62.2 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-H.; Wu, C.-H.; Wu, C.-K.; Zhu, Y.-Q.; Liu, J.; Lee, K.-W.; Huang, C.-J. The Effects of Annealing Temperatures and Dimethylformamide Doses on Porous TiO2 Films. Crystals 2023, 13, 61. https://doi.org/10.3390/cryst13010061
Huang P-H, Wu C-H, Wu C-K, Zhu Y-Q, Liu J, Lee K-W, Huang C-J. The Effects of Annealing Temperatures and Dimethylformamide Doses on Porous TiO2 Films. Crystals. 2023; 13(1):61. https://doi.org/10.3390/cryst13010061
Chicago/Turabian StyleHuang, Pao-Hsun, Cheng-Han Wu, Cheng-Kuan Wu, Yu-Quan Zhu, Jing Liu, Kuan-Wei Lee, and Chien-Jung Huang. 2023. "The Effects of Annealing Temperatures and Dimethylformamide Doses on Porous TiO2 Films" Crystals 13, no. 1: 61. https://doi.org/10.3390/cryst13010061
APA StyleHuang, P.-H., Wu, C.-H., Wu, C.-K., Zhu, Y.-Q., Liu, J., Lee, K.-W., & Huang, C.-J. (2023). The Effects of Annealing Temperatures and Dimethylformamide Doses on Porous TiO2 Films. Crystals, 13(1), 61. https://doi.org/10.3390/cryst13010061