Boundary Effect and Critical Temperature of Two-Band Superconducting FeSe Films
Abstract
:1. Introduction
2. Theoretical Scheme
3. Critical Temperature of FeSe Films in Ginzburg–Landau Theory
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based layered superconductor La[O1−xFx]FeAs (x=0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.C.; Luo, J.Y.; Yeh, K.W.; Chen, T.K.; Huang, T.W.; Wu, P.M.; Lee, Y.C.; Huang, Y.L.; Chu, Y.Y.; Yan, D.C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Löhneysen, H.V. Excess conductivity and Berezinskii-Kosterlitz-Thouless transition in superconducting FeSe thin films. J. Phys. Condens. Matter 2014, 26, 455701. [Google Scholar] [CrossRef] [PubMed]
- Terashima, T.; Kikugawa, N.; Kiswandhi, A.; Choi, E.S.; Brooks, J.S.; Kasahara, S.; Watashige, T.; Ikeda, H.; Shibauchi, T.; Matsuda, Y.; et al. Anomalous Fermi surface in FeSe seen by Shubnikov-de Haas oscillation measurements. Phys. Rev. B 2014, 90, 144517. [Google Scholar] [CrossRef] [Green Version]
- McQueen, T.M.; Williams, A.J.; Stephens, P.W.; Tao, J.; Zhu, Y.; Ksenofontov, V.; Casper, F.; Felser, C.; Cava, R.J. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 2009, 103, 057002. [Google Scholar] [CrossRef]
- McQueen, T.M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y.S.; Allred, J.; Williams, A.J.; Qu, D.; et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 2009, 79, 014522. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.D.; Kim, T.K.; Haghighirad, A.A.; Davies, N.R.; McCollam, A.; Narayanan, A.; Blake, S.F.; Chen, Y.L.; Ghannadzadeh, S.; Schofield, A.J.; et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 2015, 91, 155106. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Y.; Li, Z.; Zhang, W.H.; Zhang, Z.C.; Zhang, J.S.; Li, W.; Ding, H.; Ou, Y.B.; Deng, P.; Chang, K.; et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402. [Google Scholar] [CrossRef] [Green Version]
- Chareev, D.; Osadchii, E.; Kuzmicheva, T.; Lin, J.Y.; Kuzmichev, S.; Volkova, O.; Vasiliev, A. Single crystal growth and characterization of tetragonal FeSe1−x superconductors. Cryst. Eng. Commun. 2013, 15, 1989. [Google Scholar] [CrossRef]
- Lin, J.Y.; Hsieh, Y.S.; Chareev, D.A.; Vasiliev, A.N.; Parsons, Y.; Yang, H.D. Coexistence of isotropic and extended s-wave order parameters in FeSe as revealed by low-temperature specific heat. Phys. Rev. B 2011, 84, 220507(R). [Google Scholar] [CrossRef]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Hott, R. Anisotropic field dependence of the electronic transport in superconducting FeSe thin films. Supercond. Sci. Technol. 2020, 33, 075011. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.H.; Xing, Y.; Li, F.S.; Zhao, Y.F.; Xia, Z.C.; Wang, L.L.; Ma, X.C.; Xue, Q.K.; Wang, J. High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 2014, 4, 6040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.K.; Luo, J.Y.; Ke, C.T.; Chang, H.H.; Huang, T.W.; Yeh, K.W.; Chang, C.C.; Hsu, P.C.; Wu, C.T.; Wang, M.J.; et al. Low-temperature fabrication of superconducting FeSe thin films by pulsed laser deposition. Thin Solid Films 2010, 519, 1540. [Google Scholar] [CrossRef]
- Tan, S.Y.; Zhang, Y.; Xia, M.; Ye, Z.Y.; Chen, F.; Xie, X.; Peng, R.; Xu, D.F.; Fan, Q.; Xu, H.C.; et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.Y.; Zhang, W.H.; Zhang, Z.C.; Sun, Y.; Xing, Y.; Wang, Y.Y.; Wang, L.L.; Ma, X.C.; Xue, Q.K.; Wang, J. Thickness dependence of superconductivity and superconductor-insulator transition in ultrathin FeSe films on SrTiO3 (001) substrate. 2D Mater. 2015, 2, 044012. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, F.; Imai, Y.; Hanawa, M.; Tsukada, I.; Maeda, A. Enhancement of the superconducting transition temperature in FeSe epitaxial thin films by anisotropic compression. Appl. Phys. Lett. 2013, 103, 172602. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Löhneysen, H.V. Superconductor-insulator quantum phase transition in disordered FeSe thin films. Phys. Rev. Lett. 2012, 108, 257003. [Google Scholar] [CrossRef]
- Zhu, C.S.; Lei, B.; Sun, Z.L.; Cui, J.H.; Shi, M.Z.; Zhuo, W.Z.; Luo, X.G.; Chen, X.H. Evolution of transport properties in FeSe thin flakes with thickness approaching the two-dimensional limit. Phys. Rev. B 2021, 104, 024509. [Google Scholar] [CrossRef]
- Farrar, L.S.; Bristow, M.; Haghighirad, A.A.; McCollam, A.; Bending, S.J.; Coldea, A.I. Suppression of superconductivity and enhanced critical field anisotropy in thin flakes of FeSe. NPJ Quantum Mater. 2020, 5, 29. [Google Scholar] [CrossRef]
- Böhmer, A.E.; Taufour, V.; Straszheim, W.E.; Wolf, T.; Canfield, P.C. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe. Phys. Rev. B 2016, 94, 024526. [Google Scholar]
- Phan, G.N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; et al. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2017, 95, 224507. [Google Scholar] [CrossRef]
- Suhl, H.; Matthias, B.T.; Walker, L.R. Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 1959, 3, 552–554. [Google Scholar] [CrossRef]
- Moskalenko, V.A. Superconductivity in metals with overlapping energy bands. Fiz. Metal. Metalloved 1959, 8, 2518–2520. [Google Scholar]
- Tilley, D.R. The Ginzburg-Landau equations for pure two band superconductors. Proc. Phys. Soc. 1964, 84, 573. [Google Scholar] [CrossRef]
- Tilley, D.R. The Ginsburg-Landau equations for anisotropic alloys. Proc. Phys. Soc. 1965, 86, 289. [Google Scholar] [CrossRef]
- Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 2003, 67, 184515. [Google Scholar] [CrossRef] [Green Version]
- Zhitomirsky, M.E.; Dao, V.H. Ginzburg-Landau theory of vortices in a multigap superconductor. Phys. Rev. B 2004, 69, 054508. [Google Scholar] [CrossRef] [Green Version]
- Dao, V.H.; Zhitomirsky, M.E. Anisotropy of the upper critical field in MgB2: The two-gap Ginzburg-Landau theory. Eur. Phys. J. B 2005, 44, 183. [Google Scholar] [CrossRef]
- Gurevich, A. Limits of the upper critical field in dirty two-gap superconductors. Physica C 2007, 456, 160. [Google Scholar] [CrossRef] [Green Version]
- Silaev, M.; Babaev, E. Microscopic theory of type-1.5 superconductivity in multiband systems. Phys. Rev. B 2011, 84, 094515. [Google Scholar] [CrossRef] [Green Version]
- Silaev, M.; Babaev, E. Microscopic derivation of two-component Ginzburg-Landau model and conditions of its applicability in two-band systems. Phys. Rev. B 2012, 85, 134514. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous cooper-pair condensate. Phys. Rev. Lett. 2012, 109, 107001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. Vortex states in nanoscale superconducting squares: The influence of quantum confinement. Phys. Rev. B 2013, 88, 144501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.F.; Becerra, V.F.; Covaci, L.; Milošević, M.V. Electronic properties of emergent topological defects in chiral p-wave superconductivity. Phys. Rev. B 2016, 94, 024520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.F.; Covaci, L.; Milošević, M.V. Topological phase transitions in small mesoscopic chiral p-wave superconductors. Phys. Rev. B 2017, 96, 224512. [Google Scholar] [CrossRef] [Green Version]
- de Gennes, P.G. Superconductivity of Metals and Alloys; Westview Press: New York, NY, USA, 1966. [Google Scholar]
- Benfenati, A.; Samoilenka, A.; Babaev, E. Boundary effects in two-band superconductors. Phys. Rev. B 2021, 103, 144512. [Google Scholar] [CrossRef]
- Gonçalves, W.C.; Sardella, E.; Becerra, V.F.; Milošević, M.V.; Peeters, F.M. Numerical solution of the time dependent Ginzburg-Landau equations for mixed (d+s)-wave superconductors. J. Math. Phys. 2014, 55, 041501. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, C.; Martins, Q.D.; Barba-Ortega, J. Vortices in a superconducting two-band disk: Role of the Josephson and bi-quadratic coupling. Physica C 2021, 581, 1353818. [Google Scholar] [CrossRef]
- Aguirre, C.; de Arruda, A.; Faúndez, J.; Barba-Ortega, J. ZFC process in 2+1 and 3+1 multi-band superconductor. Physica B 2021, 615, 413032. [Google Scholar] [CrossRef]
- Ketterson, J.B.; Song, S.N. Superconductivity; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Subedi, A.; Zhang, L.J.; Singh, D.J.; Du, M.H. Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B 2008, 78, 134514. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Zhu, H.P.; Shanenko, A.A. Interplay of Fermi velocities and healing lengths in two-band superconductors. Phys. Rev. B 2020, 101, 214510. [Google Scholar] [CrossRef]
- Tamai, A.; Ganin, A.Y.; Rozbicki, E.; Bacsa, J.; Meevasana, W.; King, P.D.C.; Caffio, M.; Schaub, R.; Margadonna, S.; Prassides, K.; et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2010, 104, 097002. [Google Scholar] [CrossRef] [PubMed]
- Ilin, K.S.; Vitusevich, S.A.; Jin, B.B.; Gubin, A.I.; Klein, N.; Siegel, M. Peculiarities of the thickness dependence of the superconducting properties of thin Nb films. Physica C 2004, 408–410, 700. [Google Scholar] [CrossRef]
- Gubin, A.I.; Ilin, K.S.; Vitusevich, S.A.; Siegel, M.; Klein, N. Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B 2005, 72, 064503. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Z.; Wang, X.C.; Wen, Y.H.; Zhu, Z.Z. Jahn-Teller effect in Nb planar atomic sheet. Acta Phys. Sin. 2007, 56, 2920. [Google Scholar] [CrossRef]
- Li, C.Z.; Li, C.; Wang, L.X.; Wang, S.; Liao, Z.M.; Brinkman, A.; Yu, D.P. Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions. Phys. Rev. B 2018, 97, 115446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Che, J.; Huang, H. Boundary Effect and Critical Temperature of Two-Band Superconducting FeSe Films. Crystals 2023, 13, 18. https://doi.org/10.3390/cryst13010018
Ye C, Che J, Huang H. Boundary Effect and Critical Temperature of Two-Band Superconducting FeSe Films. Crystals. 2023; 13(1):18. https://doi.org/10.3390/cryst13010018
Chicago/Turabian StyleYe, Chenxiao, Jiantao Che, and Hai Huang. 2023. "Boundary Effect and Critical Temperature of Two-Band Superconducting FeSe Films" Crystals 13, no. 1: 18. https://doi.org/10.3390/cryst13010018
APA StyleYe, C., Che, J., & Huang, H. (2023). Boundary Effect and Critical Temperature of Two-Band Superconducting FeSe Films. Crystals, 13(1), 18. https://doi.org/10.3390/cryst13010018