First-Principles Calculations of Structural and Mechanical Properties of Cu–Ni Alloys
Abstract
:1. Introduction
2. Computational Details
3. Mechanical Properties
4. Conclusions
- Based on DFT, we calculated elastic constants, bulk modulus, shear modulus, Young’s modulus, anisotropic index AU, Poisson’s ratio v, average velocity, and B/G in this paper. It improves and supports the results for the experiment.
- Cu-rich and Ni-rich Cu–Ni alloys are ductile; the Ni-rich alloy has the highest uniaxial deformation resistance due to having the largest Young’s modulus.
- Cu0.5Ni0.5 as the most suitable binary compound is predicted to have great stiffness in the Cu–Ni system, due to the brittleness and low anisotropy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peterson, J.; Honnell, K.; Greeff, C.; Johnson, J.; Boettger, J.; Crockett, S. Global equation of state for copper. AIP Conf. Proc. 2012, 1426, 763. [Google Scholar]
- Varea, A.; Pellicer, E.; Pané, S.; Nelson, B.J.; Surinõach, S.; Baró, M.D.; Sort, J. Mechanical Properties and Corrosion Behaviour of Nanostructured Cu-rich CuNi Electrodeposited Films. Int. J. Electrochem. Sci. 2012, 7, 1288. [Google Scholar]
- Metikoš-Huković, M.; Babić, R.; Rončević, I.Š.; Grubač, Z. Corrosion resistance of copper–nickel alloy under fluid jet impingement. Desalination 2011, 276, 228. [Google Scholar] [CrossRef]
- Manzano, C.; Caballero-Calero, O.; Tranchant; Bertero, E.; Cervino-Solana, P.; Martin-Gonzales, M.; Philippe, L. Thermal conductivity reduction by nanostructuration in electrodeposited CuNi alloys. J. Mater. Chem. C 2021, 9, 3447. [Google Scholar] [CrossRef]
- Durivault, L.; Brylev, O.; Reyter, D.; Sarrazin, M.; Bélanger, D.; Roué, L. Cu–Ni materials prepared by mechanical milling: Their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J. Alloy. Compd. 2007, 432, 323. [Google Scholar] [CrossRef]
- Hur, S.; Kim, D.; Kang, B.; Yoon, S. The Structural and Electrical Properties of CuNi Thin-Film Resistors Grown on AlN Substrates for Π -Type Attenuator Application. J. Electrochem. Soc. 2005, 152, G472. [Google Scholar] [CrossRef]
- Chen, M.; Ma, E.; Hemker, K.J.; Sheng, H.; Wang, Y.; Cheng, X. Deformation twinning in nanocrystalline aluminum. Science 2003, 23, 1275. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Koch, C.; Tsui, T.; Pharr, G. On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. J. Mater. Res. 1995, 10, 2892. [Google Scholar] [CrossRef]
- Pellicer, E.; Varea, A.; Pané, S.; Nelson, B.J.; Menéndez, E.; Estrader, M.; Suriñach, S.; Baró, M.D.; Nogués, J.; Sort, J. Nanocrystalline Electroplated Cu–Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior. Adv. Funct. Mater. 2010, 20, 983. [Google Scholar] [CrossRef]
- Wang, C.; Bhuiyan, M.E.H.; Moreno, S.; Minary-Jolandan, M. Alloy with Controlled Composition from a Single Electrolyte Using Co-Electrodeposition. Appl. Mater. Interfaces 2020, 12, 18683. [Google Scholar] [CrossRef]
- Hui, J.; Zhang, X.; Yang, G.; Liu, T.; Liu, W. First-principles study of de-twinning in a FCC alloy. J. Solid State Chem. 2021, 293, 121765. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, X.; Chen, B. The microstructure and property of lamellar interface in ternary Mg–Gd–Cu alloys: A combined experimental and first-principles study. J. Mater. Sci. 2021, 56, 9470. [Google Scholar] [CrossRef]
- Iwaoka, H.; Hircosawa, S. First-principles calculation of elastic properties of Cu-Zn intermetallic compounds for improving the stiffness of aluminum alloys. Comput. Mater. Sci. 2020, 174, 109479. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Fan, Z.; Zhang, Y.; Hui, S.; Peng, L.; Huang, G.; Xie, H.; Mi, X. Effects of Co Addition on the Microstructure and Properties of Elastic Cu-Ni-Si-Based Alloys for Electrical Connectors. Materials 2021, 14, 1996. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Hu, X.; Li, X.; Li, Z.; Zheng, Y.; Li, N.; Dong, C. Microstructure and electrical contact behavior of Al2O3-Cu/30W3SiC (0.5 Y2O3) composites. J. Mater. Res. Technol. 2022, 17, 1246. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Z.; Li, X.; Hu, Y.; Li, N.; Zheng, Y.; Shao, Y.; Liu, R.; Dong, C. Enthalpic interaction promotes the stability of high elastic Cu-Ni-Sn alloys. J. Alloy. Compd. 2022, 896, 163068. [Google Scholar] [CrossRef]
- Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, B.G.; Cote, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997, 131, 233. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P. On Use of Pseudo-Voigt Profiles in Diffraction Line Broadening Analysis. Fizika A 2000, 9, 61. [Google Scholar]
- Caglioti, G.; Paoletti, A.; Ricci, F. Choice of Collimators for Crystal Spectrometers for Neutron Diffraction, Nuclear Instruments and Methods. Nucl. Instrum. 1958, 3, 223. [Google Scholar] [CrossRef]
- Katsura, T.; Tange, Y. A simple derivation of the Birch–Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals 2019, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Kapahi, A.; Udaykumar, H. Dynamics of void collapse in shocked energetic materials: Physics of void–void interactions. Shock. Waves 2013, 23, 537. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Q.; Zhong, M.; Gan, Y.; Liu, F.; Li, X.; Tang, B. Predicting impact sensitivity of energetic materials: Insights from energy transfer of carriers. Acta Mater. 2022, 236, 118137. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices. Oxford University Press: London, UK, 1954. [Google Scholar]
- Phacheerak, K.; Thanomngam, P. Pressure Dependence of Structural and Elastic Properties of Na2O: First-Principles Calculations. Intergrated Ferroelectr. 2022, 224, 256. [Google Scholar] [CrossRef]
- Yang, C.; Duan, Y.; Yu, J.; Peng, M.; Zheng, S.; Li, M. Elastic anisotropy and thermal properties of MBN (M = Al, Ga) systems using first-principles calculations. Vacuum 2023, 207, 111626. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, Y.; Wang, H.; Dong, Q.; Tan, J. First-principles study on the elastic anisotropy and thermal properties of Mg–Y compounds. J. Phys. Chem. Solids 2022, 171, 111034. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Zhou, X.; Duan, Y.; Shen, L.; Peng, M. Insights to electronic structures, elastic properties, fracture toughness, and thermal properties of M23C6 carbides. Int. J. Refract. Met. Hard Mater. 2022, 109, 105985. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Jiang, C.; Fan, D.; Zhang, M.; Liu, F.; Tang, B. Criteria of Mechanical Stability of Seven Crystal Systems and Its Application: Taking Silica as an Example. Chin. J. High Press. Phys. 2022, 36, 051101. [Google Scholar]
Composition | Lattice Parameter a (nm) | Density (g·cm−3) | Volume (nm3) |
---|---|---|---|
Cu0.08Ni0.92 | 0.35302 | 8.9223 | 0.010999 |
Cu0.5Ni0.5 | 0.35557 | 9.0315 | 0.011239 |
Cu0.95Ni0.05 | 3.6174 | 8.8827 | 0.011834 |
Cu0.97Ni0.03 | 0.35836 [2] | ||
Cu0.46Ni0.54 | 0.3560 2 [2] | ||
Cu0.55N0.45 | 0.3561 [9] | ||
Cu0.13Ni0.87 | 0.3534 [9] | ||
Cu100Ni0 | 0.36148 [10] | ||
Cu0Ni100 | 0.35232 [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Niu, B.; Liu, Q.; Liu, Z.; Jiang, C. First-Principles Calculations of Structural and Mechanical Properties of Cu–Ni Alloys. Crystals 2023, 13, 43. https://doi.org/10.3390/cryst13010043
Wei Y, Niu B, Liu Q, Liu Z, Jiang C. First-Principles Calculations of Structural and Mechanical Properties of Cu–Ni Alloys. Crystals. 2023; 13(1):43. https://doi.org/10.3390/cryst13010043
Chicago/Turabian StyleWei, Yun, Ben Niu, Qijun Liu, Zhengtang Liu, and Chenglu Jiang. 2023. "First-Principles Calculations of Structural and Mechanical Properties of Cu–Ni Alloys" Crystals 13, no. 1: 43. https://doi.org/10.3390/cryst13010043