A Metamaterial-Based Cross-Polarization Converter Characterized by Wideband and High Efficiency
Abstract
:1. Introduction
2. Design of the Metamaterial Polarization Converter
2.1. Fundamental Theory
2.2. Polarization Converter Model
3. Simulations and Discussions
4. Experimental Validations
- Two ridge horns operating at 1–6 GHz were connected to a vector network analyzer, and were respectively utilized to generate the y-polarized plane wave at nearly normal incidence (the oblique angle was less than 10°) and received both the co-polarization and cross-polarization reflective waves;
- The fabricated sample was placed in front of the horn antennas, and they were surrounded by absorbing materials. Then, original co-polarized reflection wave amplitude ryy and cross-polarized reflection wave amplitude rxy were recorded by the network analyzer respectively, as detailed in Figure 6c.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menzel, C.; Helgert, C.; Rockstuhl, C.; Kley, E.; Tünnermann, A.; Pertsch, T.; Lederer, F. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 2010, 104, 253902. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, V.; Mladyonov, P.; Prosvirnin, S.; Rogacheva, A.; Chen, Y.; Zheludev, N. Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure. Phys. Rev. Lett. 2006, 97, 167401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, M.; Akosman, A.; Serebryannikov, A.; Ozbay, E. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys. Rev. Lett. 2012, 108, 213905. [Google Scholar] [CrossRef] [PubMed]
- Pors, A.; Nielsen, M.G.; Bozhevolnyi, S.I. Broadband plasmonic half-wave plates in reflection. Opt. Lett. 2013, 38, 513–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Scattering by a two-dimensional periodic array of conducting plates. IEEE Trans. Antennas Propag. 2003, 18, 660–665. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Cascaded metasurfaces for complete phase and polarization control. Appl. Phys. Lett. 2013, 102, 1232009. [Google Scholar] [CrossRef]
- Tierney, B.B. Advances in Emerging Electromagnetics Topics: Metamaterials and Wireless Power Transfer. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2016. [Google Scholar]
- Boriskin, A.; Sauleau, R. (Eds.) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications; Springer: Berlin, Germany, 2017. [Google Scholar]
- Tharp, J.; López-Alonso, J.; Ginn, J.; Lail, B.; Middleton, C.; Munk, B.; Boreman, G. Demonstration of a single layer meanderline phase retarder at IR. Opt. Lett. 2006, 31, 2687–2689. [Google Scholar] [CrossRef]
- Tharp, J.; Alda, J.; Boreman, G. Off-axis behavior of an infrared meanderline waveplate. Opt. Lett. 2007, 32, 2852–2854. [Google Scholar] [CrossRef]
- Tharp, J.; Lail, B.; Munk, B.; Boreman, G. Design and demonstration of an infrared meanderline phase retarder. IEEE Tantenn. Propag. 2007, 55, 2983–2988. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. Polarization rotation and the third Stokes parameter: The effects of spacecraft attitude and Faraday rotation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 506–515. [Google Scholar] [CrossRef]
- Mutlu, M.; Ozbay, E. A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling. Appl. Phys. Lett. 2012, 100, 051909. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Alu, A. Tailoring the dispersion of plasmonic ’nanorods to realize broadband optical meta-wave plates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef]
- Lee, H.; Liu, Z.; Xiong, Y.; Sun, C.; Zhang, X. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 2007, 15, 15886–15891. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Alekseyev, L.V.; Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 2006, 14, 8247–8256. [Google Scholar] [CrossRef] [Green Version]
- Grigorenko, A.N. Negative refractive index in artificial metamaterials. Opt. Lett. 2006, 31, 2483–2485. [Google Scholar] [CrossRef] [Green Version]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A Pure Appl. Opt. 2008, 10, 93002. [Google Scholar] [CrossRef] [Green Version]
- Boyvat, M.; Hafner, C.V. Molding the Flow of Magnetic Field with Metamaterials: Magnetic Field Shielding. Prog. Electromagn. Res. 2012, 126, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2011, 12, 1443–1447. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Mittal, D.; Bargota, R. Triple band ultrathin polarization insensitive metamaterial absorber for defense, explosive detection and airborne radar applications. Microw. Opt. Techn. Let. 2019, 61, 89–95. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, W.; Geyi, W. Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface. Sci. Rep. 2018, 8, 3791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.B.; Zhou, P.H.; Lu, H.; Zhang, L.; Xie, J.; Deng, L. Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator. Opt. Mater. Express 2016, 6, 1393–1404. [Google Scholar] [CrossRef]
- Xu, P.; Wang, S.Y.; Wen, G.Y. A linear polarization converter with near unity efficiency in microwave regime. J. Appl. Phys. 2017, 121, 144502. [Google Scholar] [CrossRef]
- Loncar, J.; Grbic, A.; Hrabar, S. A Reflective Polarization Converting Metasurface at X-Band Frequencies. IEEE Trans. Antennas Propag. 2018, 66, 3213–3218. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Su, J.; Qu, M.; Guo, Q.; Li, Z.; Song, J. Ultrawideband and high-efficient polarization conversion metasurface based on multi-resonant element and interference theory. Opt. Express 2021, 29, 35938–35950. [Google Scholar] [CrossRef]
- Kamal, B.; Chen, J.; Zeng, Y.; Ren, J.; Ullah, S.; Khan, W. High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface. Opt. Mater. Express 2021, 11, 1343. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ma, H.; Qu, S.; Xu, Z.; Zhang, A.; Yan, M.; Li, Y. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 2014, 115, 154504. [Google Scholar] [CrossRef]
- Sun, H.; Gu, C.; Chen, X.; Li, Z.; Liu, L.; Martin, F. Ultra-wideband and broad-angle linear polarization conversion metasurface. J. Appl. Phys. 2017, 121, 174902. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Fraz, Q.; Tahir, F. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle. J. Appl. Phys. 2017, 121, 045103. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Jiang, Y.; Akwuruoha, C. Ultra-broadband and polarization-independent planar absorber based on multilayered graphene. Chin. Phys. B 2017, 26, 114102. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, H.; Kwon, H.; Shin, D.W.; Joh, H.K.; Han, K.; Park, J.H.; Cho, B. Association of underweight status with the risk of tuberculosis: A nationwide population-based cohort study. Sci. Rep. 2022, 12, 3518. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
r1 | 4 | g2 | 1.2 |
r2 | 6 | g3 | 2 |
r3 | 7.7 | h1 | 2.4 |
r1′ | 4.8 | h2 | 3 |
r2′ | 6.8 | h3 | 2.4 |
r3′ | 8.8 | h4 | 5 |
g1 | 1.2 | p | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Li, M.; Wang, J.; Huang, X.; Zhang, S. A Metamaterial-Based Cross-Polarization Converter Characterized by Wideband and High Efficiency. Crystals 2023, 13, 17. https://doi.org/10.3390/cryst13010017
Jiang Y, Li M, Wang J, Huang X, Zhang S. A Metamaterial-Based Cross-Polarization Converter Characterized by Wideband and High Efficiency. Crystals. 2023; 13(1):17. https://doi.org/10.3390/cryst13010017
Chicago/Turabian StyleJiang, Yannan, Mianji Li, Jiao Wang, Xialin Huang, and Shitian Zhang. 2023. "A Metamaterial-Based Cross-Polarization Converter Characterized by Wideband and High Efficiency" Crystals 13, no. 1: 17. https://doi.org/10.3390/cryst13010017
APA StyleJiang, Y., Li, M., Wang, J., Huang, X., & Zhang, S. (2023). A Metamaterial-Based Cross-Polarization Converter Characterized by Wideband and High Efficiency. Crystals, 13(1), 17. https://doi.org/10.3390/cryst13010017