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Abstract: Based on two-band Bogoliubov–de Gennes theory, we study the boundary effect of an
interface between a two-gap superconductor FeSe and insulator (or vacuum). New boundary terms
are introduced into two-band Ginzburg–Landau formalism, which modifies the boundary conditions
for the corresponding order parameters of superconductor. The theory allows for a mean-field
calculation of the critical temperature suppression with the decrease in FeSe film thickness. Our
numerical results are in good agreement with the experimental data observed in this material.
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1. Introduction

The discovery of iron-based materials with a high superconducting transition temper-
ature has triggered great interest for both fundamental studies and practical applications in
this field [1]. Among these superconductors, the FeSe system has a simple crystal structure,
clean superconducting phase and low toxicity, making it an appealing candidate for study-
ing the superconducting properties of Fe-based compounds [2]. The FeSe layers consist of
square lattices of Fe atoms with tetrahedrally coordinated covalent bonds to the Se anions,
and the lattice constant perpendicular to the layered plane is about 0.55 nm [3]. The Fermi
surface of this compound consists of one electron and one-hole thin cylinders through
Shubnikov–de Haas oscillations [4]. At around 100 K, FeSe shows a structural phase transi-
tion from tetragonal to orthorhombic without an accompanying magnetic phase transition
and becomes superconducting below 8 K [2,5–7]. The picture of two-gap superconductivity
has been clearly confirmed by the scanning tunneling microscopy measurements, multiple
Andreev reflection spectroscopy, specific heat measurements and other experiments [8–12].

High-quality, superconducting thin films have an important role in applications and
basic research of superconductivity. In this respect, preparing high-quality thin-film sam-
ples not only satisfies the demands for some measurements of basic physical properties
but also provides suitable bases for making tunneling junctions, which determines sev-
eral important superconducting parameters, such as gap value and paring symmetry [13].
Previous studies examining the thickness dependence of FeSe have been limited to mea-
surements on thin films grown using techniques such as molecular beam expitaxy [14,15],
pulsed laser deposition [16] and radio-frequency sputtering [17], all of which require well-
optimised growth protocols. An alternative to the growth of thin films is to create devices
by mechanical exfoliation of high-quality single crystals. With this method, a series of
FeSe superconducting films with thicknesses ranging from 470 to 2.2 nm was obtained
on the Si/SiO2 substrate [18]. A dramatic depression of Tc has been observed when the
thickness is smaller than 27 nm. Farrar et al. have also observed similar behavior: a sharp
decrease in superconductivity occurs at d < 25 nm [19]. One possible origin for this Tc
suppression could be the increase in disorder scattering with reducing thickness [19,20].
Another alternative possibility is due to the interaction between FeSe thin film and the

Crystals 2023, 13, 18. https://doi.org/10.3390/cryst13010018 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13010018
https://doi.org/10.3390/cryst13010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-0690-361X
https://orcid.org/0000-0003-1642-7183
https://doi.org/10.3390/cryst13010018
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13010018?type=check_update&version=2


Crystals 2023, 13, 18 2 of 9

substrate [21]. However, up to now, there is still no consensus on the explanation of the
experimental data mentioned above.

In this paper, we propose that the Tc dependence on the film thickness is due to the
influence of the boundary effect between the two-band superconductor and the insulator
(or vacuum). We first introduce the appropriate boundary conditions for the Ginzburg–
Landau (GL) order parameters at the superconductor–insulator interface. We then give
a microscopic analysis of these new boundary terms based on two-band Bogoliubov–de
Gennes theory. Our theoretical result is consistent with the experimental data of FeSe
films, which suggests the boundary effect is an important factor for the understanding of
superconducting properties in this iron-based compound.

The rest of this article is structured as follows. In Section 2, we first review two-band
Bogoliubov–de Gennes theory and GL equations, and then give a microscopic derivation
of proper boundary conditions for the superconductor-insulator interface. In Section 3, we
perform the calculations on the film-thickness-dependence of critical temperature for the
FeSe compound in the context of GL theory. Finally, we conclude this article in Section 4.

2. Theoretical Scheme

Based on the previous literature [22–31], we can write the Hamiltonian of a two-band
superconductor as

H = ∑
iσ

c†
iσ(r)ĥ(r)ciσ(r)−∑

ii′
gii′c

†
i↑(r)c

†
i↓(r)ci′↓(r)ci′↑(r), (1)

where i, i′ = 1, 2 are the band indices and σ =↑, ↓ is the spin index. ĥ(r) is the single-particle
Hamiltonian of the normal metal, and gii′ are the electron–phonon interaction constants
with g12 = g21.

We can introduce the gap functions as

Ψi(r) = −∑
i′

gii′〈ci′↓(r)ci′↑(r)〉 (2)

and transform the Hamiltonian into the mean-field form

He f f = ∑
iσ

c†
iσ(r)ĥ(r)ciσ(r) + ∑

i
[Ψi(r)c†

i↑(r)c
†
i↓(r) + H.c.]. (3)

This effective Hamiltonian can be diagonalized by means of the Bogoliubov transformation
with b and b† as the annihilation and creation operators of quasi-particle excitations:

ci↑(r) = ∑
k
[uik(r)bik↑ − v∗ik(r)b

†
ik↓] (4)

and

ci↓(r) = ∑
k
[uik(r)bik↓ + v∗ik(r)b

†
ik↑] (5)

where k is the wave vector. As a result, the effective Hamiltonian can be written as

He f f = Eg + ∑
ikσ

Eikb†
ikσbikσ. (6)

Eg is the ground state energy, and Eik is the energy of the excitation.
Using the commutator [ciσ(r), He f f ], together with Equations (4)–(6), we can obtain

the Bogoliubov–de Gennes equations for a two-band superconductor [32–35](
ĥ Ψi(r)

Ψ∗i (r) −ĥ∗

)(
uik(r)
vik(r)

)
= Eik

(
uik(r)
vik(r)

)
. (7)
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From Equation (6), we can also obtain 〈b†
ik↑bik↑〉 = f (Eik) with f (Eik) = [1+ exp(Eik/kBT)]−1.

Then, with Equation (2), we can transform the self-consistent gap equations into

Ψi(r) = ∑
i′k

gii′v
∗
i′k(r)ui′k(r)× [1− 2 f (Ei′k)]. (8)

In analogy with the single-band case [36], for small gap functions Ψi, we can obtain
the linearized form of self-consistency conditions from Equations (7) and (8) as

Ψi(r) = ∑
i′

∫
Kii′(r, r′)Ψi′(r

′)dr′ (9)

with the kernel

Kii′(r, r′) = gii′kBT ∑
kk′

∑
ω

Φ∗i′k(r
′)Φ∗i′k′(r′)Φi′k(r)Φi′k′(r)

(εi′k − ih̄ω)(εi′k′ + ih̄ω)
. (10)

Φi′k(r) is defined as the normal-state eigenfunction of the electron; ĥΦi′k = εi′kΦi′k. The
frequency ω = (2ν + 1)πkBT/h̄, where ν is an integer.

With the explicit expressions of the kernels in the bulk system and the addition of
nonlinear terms to the gap equations, we can obtain the two-band GL equations from
Equation (9) as [27]

α1(T)Ψ1 + β1|Ψ1|2Ψ1 − γ1∇2Ψ1 − ε12Ψ2 = 0 (11)

and

α2(T)Ψ2 + β2|Ψ2|2Ψ2 − γ2∇2Ψ2 − ε12Ψ1 = 0 (12)

with the GL parameters

α1,2 = N1,2

[
λ22,11

λ
− 1

λmax
− ln

(
Tc0

T

)]
, βi =

7ζ(3)Ni
16π2(kBTc0)2 , (13)

γi =
7ζ(3)h̄2Niv2

Fi
16π2(kBTc0)2 and ε12 =

N1λ12

λ
=

N2λ21

λ
. (14)

λii′ = gii′Ni′ with Ni′ being the density of states at the Fermi level for each band; λ =

λ11λ22 − λ12λ21 and λmax = 1
2

[
(λ11 + λ22) +

√
(λ11 − λ22)2 + 4λ12λ21

]
are the determi-

nant and the largest eigenvalue of λ-matrix, respectively. Tc0 is the bulk critical temperature,
and vFi is the average Fermi velocity for each band.

In the spatially homogeneous case, we can neglect the gradient γ-terms. Equations (11)
and (12) will yield the gap equations at T = Tc0:(

λ11 λ12
λ21 λ22

)(
Ψ1
Ψ2

)
= λmax

(
Ψ1
Ψ2

)
, (15)

which obviously give a consistent result.
Meanwhile, we can write down the boundary conditions for the two-band GL theory

at the interface between the two-band superconductor and insulator (or vacuum) as

∇Ψi · s|S= −∑
i′

Aii′Ψi′ (16)

with S, the boundary coordinate, and Aii′ , as some constants. From Equation (16), we can
see that the ordinary Neumann boundary condition corresponds to Aii′ = 0. However,
we will show that the boundary effect induced by these A-terms is important for the
understanding of the Tc suppression in FeSe thin films.
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At this stage, we would also like to point out the boundary effect and different
interband interactions in multi-band superconductors have already been extensively stud-
ied in the literature. Babaev et al. presented a microscopic study on the behavior of
the order parameters for two-band superconductors based on the free boundary condi-
tion [37]. With the Neumann boundary condition, the stable edge states and the dynamic
response of such states to an external applied current have been investigated in the time-
dependent Ginzburg–Landau formalism for the two-band mesoscopic superconductors [38].
Aguirre et al. also discussed the effects of different interband interactions on the vortex
states by solving the two-band Ginzburg–Landau equations with the Neumann boundary
condition [39,40]. However, to explain the suppression of critical temperature with the
decrease in film thickness, we need to conduct detailed microscopic analysis and derive
the correct boundary terms based on the two-band Bogoliubov–de Gennes theory for the
superconductor FeSe.

Now, we try to derive these boundary A-terms in Equation (16) from the two-band
Bogoliubov–de Gennes theory. In all cases, we assume that there is no current flowing
through the boundary. The equation to be solved reads

Ψi(s) = ∑
i′

∫
Kii′(s, s′)Ψi′(s

′)ds′ (17)

where s measures the normal distance from the boundary. For simplicity, we set the cross-
section of the boundary as 1. Kii′(s, s′) is defined by Equation (10), and due to the existence
of interface Ψi(s) will decrease exponentially in the insulating regime.

Following the procedure suggested by de Gennes [36], we suppose that the form of
gap functions close to the surface behaves as

Ψi(s) = Ψi0 +

(
∑
i′

Aii′Ψi′0

)
s (18)

with Ψi0 being the gap function at the boundary and s > 0 inside the superconductor.
It is easy to see that the boundary condition in Equation (16) follows naturally from
Equation (18). However, beyond the scale of the coherence length from the boundary, the
linear dependence definitely becomes invalid. Ψi will then have a negative curvature and
reach the BCS value deep in the superconductor.

If we introduce K0
ii′(s, s′) as the kernel of gap functions in the bulk metal, we can then

transform Equation (17) as

Ψi(s)−∑
i′

∫
K0

ii′(s, s′)Ψi′(s
′)ds′

= −∑
i′

∫
[K0

ii′(s, s′)− Kii′(s, s′)]Ψi′(s
′)ds′ ≡ −∑

i′
Hii′(s). (19)

From Equations (11) and (12) with the higher order β-terms omitted, while also noting
that K0

ii′(s, s′) = K0
ii′(s− s′) due to the translational symmetry, we can read out the Laplace

transformation of K0
ii′ close to the critical temperature as

K0
ii′(p) =

λii′

λmax
+

λii′γi′

Ni′
p2. (20)

By plugging Equation (20) into Equation (19), we can get

Ψi(p)−∑
i′
(λii′/λmax)Ψi′(p)−∑

i′
(λii′γi′/Ni′)p2Ψi′(p) = −∑

i′
Hii′(p). (21)

Ψi(p) and Hii′(p) are the Laplace transformations of Ψi(s) and Hii′(s), respectively. Since
the first two terms of the left-handed side in Equation (21) can be approximately canceled
out according to Equation (15), we have
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∑
i′
(λii′γi′/Ni′)p2Ψi′(p) = ∑

i′
Hii′(p). (22)

We can see that both sides in Equation (22) take the main contribution from the boundary
region. Notice that the Laplace transformation of the gap functions in Equation (18) takes
the form

Ψi(p) =
Ψi0
p

+ ∑
i′

Aii′Ψi′0
p2 . (23)

Then, at p→ 0, we will obtain from Equation (22)

∑
i′i′′

(λii′γi′/Ni′)Ai′i′′Ψi′′0 = ∑
i′

Hii′(p = 0). (24)

According to de Gennes’ analysis [36,41], from the sum rules∫
K0

ii′(s, s′)ds′ =
λii′

λmax
and

∫
Kii′(s, s′)ds′ =

λii′Ni′(s)
λmaxNi′

(25)

with Ni′(s) as the local density of states at the Fermi surface, we can write the Laplace
transformation of the kernel difference at p→ 0 as

Hii′(p = 0) =
∫

Hii′(s)ds =
λii′Ψi′0
λmax

∫ Ψi′(s)
Ψi′0

[
1− Ni′(s)

Ni′

]
ds. (26)

Ψi′(s)/Ψi′0 approaches zero in the insulating region, and is of the order of one in the metallic
region. Ni′(s)/Ni′ also passes from 0→ 1 a few atoms from the boundary. Therefore, the
integrand in Equation (26) is nonvanishing only in a width of the order of the lattice
constant a. We can then estimate Hii′(p = 0) as

Hii′(p = 0) =
λii′ a
λmax

Ψi′0. (27)

By combining Equation (24) with Equation (27), we can finally obtain

Aii =
Nia

γiλmax
and A12 = A21 = 0. (28)

With these formulae, we successfully demonstrate the microscopic origin of boundary
conditions in Equation (16).

Based on two-band GL theory, we can write the supercurrent at the boundary S as

JS = −ieh̄
2

∑
i=1

1
mi

[Ψ∗i (∇Ψi · s)|S −Ψi(∇Ψ∗i · s)|S]. (29)

According to our boundary conditions, we have the supercurrent

JS = − ieh̄
m1

[Ψ∗1(−A11Ψ1)−Ψ1(−A11Ψ∗1)]−
ieh̄
m2

[Ψ∗2(−A22Ψ2)−Ψ2(−A22Ψ∗2)] = 0, (30)

which definitely gives a consistent result.

3. Critical Temperature of FeSe Films in Ginzburg–Landau Theory

In this section, we try to understand the film-thickness-dependence of Tc for FeSe
based on the boundary effect mentioned above. We suppose that the film extends from
z = −d/2 to z = d/2 and the film thickness is d.

From Equations (11) and (12), two-band GL equations can be written as
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(
Ĥ11 Ĥ12
Ĥ21 Ĥ22

)(
Ψ1(r)
Ψ2(r)

)
= 0 (31)

with

Ĥii = −γi∇2 + αi(T) (32)

and

Ĥ12 = Ĥ21 = −ε12. (33)

Note that close to the critical temperature, the magnitudes of order parameters are small,
and the higher order β-terms can be neglected.

Similarly to the single-band case [41], we set the form of gap functions for the super-
conducting film as (

Ψ1(z)
Ψ2(z)

)
=

(
η1 cos(k1z)
η2 cos(k2z)

)
(34)

with ηi as the constant. Then, from the boundary conditions

dΨi
dz

∣∣∣∣
z=±d/2

= ∓AiiΨi, (35)

we have ki, satisfying

ki tan
(

kid
2

)
= Aii. (36)

Let us introduce

Hii′ = 〈Ψi|Ĥii′ |Ψi′〉 =
∫ d/2

−d/2
Ψi(z)Ĥii′Ψi′(z)dz. (37)

We can transform Equation (31) into(
H11 H12
H21 H22

)(
η1
η2

)
= 0 (38)

with

Hii =
[
γik2

i + αi(T)
][d

2
+

sin(kid)
2ki

]
(39)

and

H12 = H21 = −ε12

[
sin( k1d

2 + k2d
2 )

k1 + k2
+

sin( k1d
2 −

k2d
2 )

k1 − k2

]
. (40)

The critical temperature of the two-band superconducting film will be determined by
the condition

H11H22 − H12H21 = 0 (41)

at T = Tc, which can be explicitly written as

∏
i=1,2

[
γik2

i + αi(Tc)
][d

2
+

sin(kid)
2ki

]
= ε2

12

[
sin( k1d

2 + k2d
2 )

k1 + k2
+

sin( k1d
2 −

k2d
2 )

k1 − k2

]2

. (42)
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For the two-band superconductor FeSe, we have Tc0 ≈ 8 K [5] and the average lattice
constant a ≈ 0.55 nm [3]. The density of states at the Fermi level for each band are N1 = 0.30
and N2 = 0.65 eV−1, respectively, [8,42]. From the numerical work in reference [43], we
can get λ11 = g11N1 = 0.30 and the ratio g11:g12:g22 = 1:0.30:0.37. Then, we have λ = 0.054,
λmax = 0.41 and ε12 = 1.1 eV−1. With the average Fermi velocities vF1 = 3.7 and vF2 = 4.4
in units of 1013 nm · s−1 [44], we get γ1 = 20 nm2 · eV−1 and γ2 = 61 nm2 · eV−1 from
Equation (14). Then, from Equation (28), we can obtain the characteristic length scales
A11 = (50 nm)−1 and A22 = (70 nm)−1. For a given film thickness d, we first get ki from
Equation (36). By plugging it into Equation (42), the critical temperature Tc as a function of
d can be calculated numerically and then plotted in Figure 1. It is shown that the critical
temperature keeps gradually decreasing with the decreases in d and Tc ≈ 3 K when the
film thickness is reduced to d = 3 nm. From Figure 1, we can see that our theoretical results
fit the experimental data on Si/SiO2 substrate well.

10 100 1000
2

3

4

5

6

7

 Data from Zhu et al. 2021
 Data from Farrar et al. 2020
 Two-band GL theory

T c
 (K

)

d (nm)

Figure 1. The critical temperature as a function of FeSe film thickness. The experimental data are
taken from Ref. [18] (circles) and Ref. [19] (squares) respectively.

At this point, we can also discuss the single-band superconducting system of nio-
bium [45,46], which shows similar behavior to FeSe. The critical temperature of Nb films
gradually decreases with a reduction in the thickness from 300 to about 50 nm. A much
stronger dependence of the critical temperature on thickness is observed for films thin-
ner than 50 nm. We would also like to apply our theoretical scheme with the similar
boundary condition ∇Ψ · s|S = −AΨ to understand this physical property for single-
band superconductor Nb. With the lattice constant a = 0.33 nm, the Fermi velocity
vF = 3.9 in units of 1013 nm · s−1, the density of states at the Fermi level N = 1.5 eV−1

and the dimensionless interaction parameter λ = 0.32 for niobium [47,48], we can ob-

tain γ =
7ζ(3)h̄2 Nv2

F
16π2(kBTc0)2 = 80 nm2 · eV−1 with the bulk critical temperature Tc0 = 9.4 K and

A = Na
γλ = (52 nm)−1. Thus, with this characteristic length scale, our theoretical sce-

nario can qualitatively explain the strong Tc suppression around 50 nm in the single-band
superconducting Nb films.

4. Conclusions

In conclusion, we introduced the appropriate boundary conditions in two-band GL
theory at the interface between two-gap superconductor and insulator (or vacuum). We also
gave a microscopic derivation of these boundary terms based on two-band Bogoliubov–de
Gennes formalism. For the two-band superconductor FeSe, we obtained the characteristic
length scales of the boundary effect as 50 and 70 nm. The theory can perfectly explain the
dramatic suppression of Tc when the film thickness is reduced to the same order of these
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length scales. Our investigation thus suggests that the boundary effect induced by these new
terms may play an important role in the research of some iron-based superconducting films.
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33. Zhang, L.F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. Vortex states in nanoscale superconducting squares: The
influence of quantum confinement. Phys. Rev. B 2013, 88, 144501. [CrossRef]
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