Progress in Near-Equilibrium Ammonothermal (NEAT) Growth of GaN Substrates for GaN-on-GaN Semiconductor Devices
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Appearance, Coloration, and Optical Absorption
3.2. X-ray Mapping
3.3. Growth and Characterization of 4″ Bulk GaN Crystal
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, S. InGaN-based blue light-emitting diodes and laser diodes. J. Cryst. Growth 1999, 201–202, 290–295. [Google Scholar] [CrossRef]
- Porowski, S. Bulk and homoepitaxial GaN-growth and characterisation. J. Cryst. Growth 1998, 189–190, 153–158. [Google Scholar] [CrossRef]
- Inoue, T.; Seki, Y.; Oda, O.; Kurai, S.; Yamada, Y.; Taguchi, T. Growth of bulk GaN single crystals by the pressure-controlled solution growth method. J. Cryst. Growth 2001, 229, 35–40. [Google Scholar] [CrossRef]
- Bockowski, M.; Strak, P.; Grzegory, I.; Lucznik, B.; Porowski, S. GaN crystallization by the high-pressure solution growth method on HVPE bulk seed. J. Cryst. Growth 2008, 310, 3924–3933. [Google Scholar] [CrossRef]
- Yamane, H.; Shimada, M.; Sekiguchi, T.; DiSalvo, F.J. Morphology and characterization of GaN single crystals grown in a Na flux. J. Cryst. Growth 1998, 186, 8–12. [Google Scholar] [CrossRef]
- Aoki, M.; Yamane, H.; Shimada, M.; Sarayama, S.; DiSalvo, F.J. Conditions for seeded growth of GaN crystals by the Na flux method. J. Cryst. Growth 2002, 56, 660–664. [Google Scholar] [CrossRef]
- Wang, W.J.; Chen, X.L.; Song, Y.T.; Yuan, W.X.; Cao, Y.G.; Wu, X. Assessment of Li-Ga-N ternary system and GaN single crystal growth. J. Cryst. Growth 2004, 264, 13–16. [Google Scholar] [CrossRef]
- Kawamura, F.; Morishita, M.; Tanpo, M.; Imade, M.; Yoshimura, M.; Kitaoka, Y.; Mori, Y.; Sasaki, T. Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method. J. Cryst. Growth 2008, 310, 3946–3949. [Google Scholar] [CrossRef]
- Konishi, Y.; Masumoto, K.; Murakami, K.; Imabayashi, H.; Takazawa, H.; Todoroki, Y.; Matsuo, D.; Maruyama, M.; Imade, M.; Yoshimura, M.; et al. Growth of Prismatic GaN Single Crystals with High Transparency on Small GaN Seed Crystals by Ca-Li-Added Na Flux Method. Appl. Phys. Express 2012, 5, 025503. [Google Scholar] [CrossRef]
- Hayashi, M.; Imanishi, M.; Yamada, T.; Matsuo, D.; Murakami, K.; Maruyama, M.; Imade, M.; Yoshimura, M.; Mori, Y. Enhancement of lateral growth of the GaN crystal with extremely low dislocation density during the Na-flux growth on a point seed. J. Cryst. Growth 2017, 468, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Peters, D. Ammonothermal synthesis of aluminum nitride. J. Cryst. Growth 1990, 104, 411–418. [Google Scholar] [CrossRef]
- Dwilinski, R.; Baranowski, J.M.; Kaminska, M. On GaN crystallization by ammonothermal method. Acta Phys. Pol. A 1996, 90, 763–766. [Google Scholar] [CrossRef]
- Ketchum, D.R.; Kolis, J.W. Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 2001, 222, 431–434. [Google Scholar] [CrossRef]
- Purdy, A.P.; Jouet, R.J.; George, C.F. Ammonothermal Recrystallization of Gallium Nitride with Acidic Mineralizers. Cryst. Growth Des. 2002, 2, 141–145. [Google Scholar]
- Hashimoto, T.; Fujito, K.; Wu, F.; Haskell, B.A.; Fini, P.T.; Speck, J.S.; Nakamura, S. Ammonothermal growth of GaN utilizing negative temperature dependence of solubility in basic ammonia. Mater. Res. Soc. Symp. Proc. 2005, 831, E2.8. [Google Scholar] [CrossRef]
- Hashimoto, T.; Fujito, K.; Saito, M.; Speck, J.S.; Nakamura, S. Ammonothermal growth of GaN on an over-1-inch seed crystal. Jpn. J. Appl. Phys. 2005, 44, L1570. [Google Scholar] [CrossRef]
- Hashimoto, T.; Wu, F.; Speck, J.S.; Nakamura, S. Growth of bulk GaN crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2007, 46, L889. [Google Scholar] [CrossRef]
- Hashimoto, T.; Wu, F.; Speck, J.S.; Nakamura, S. A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 2007, 6, 568–571. [Google Scholar] [CrossRef]
- Dwilinski, R.; Doradzinski, R.; Garczynski, J.; Sierzputowski, L.P.; Puchalski, A.; Kanbara, Y.; Yagi, K.; Minakuchi, H.; Hayashi, H. Excellent crystallinity of truly bulk ammonothermal GaN. J. Cryst. Growth 2008, 310, 3911–3916. [Google Scholar] [CrossRef]
- Wang, B.; Bliss, D.; Suscavage, M.; Swider, S.; Lancto, R.; Lynch, C.; Weyburne, D.; Li, T.; Ponce, F.A. Ammonothermal growth of high-quality GaN crystals on HVPE template seeds. J. Cryst. Growth 2011, 318, 1030–1033. [Google Scholar] [CrossRef]
- Bao, Q.; Saito, M.; Hazu, K.; Kagamitani, Y.; Kurimoto, K.; Tomida, D.; Qiao, K.; Ishiguro, T.; Yokoyama, C.; Chichibu, S.F. Ammonothermal growth of GaN on a self-nucleated GaN seed crystal. J. Cryst. Growth 2014, 404, 168–171. [Google Scholar] [CrossRef]
- Pimputkar, S.; Kawabata, S.; Speck, J.S.; Nakamura, S. Improved growth rates and purity of basic ammonothermal GaN. J. Cryst. Growth 2014, 403, 7–17. [Google Scholar] [CrossRef]
- Hashimoto, T.; Letts, E.R.; Key, D.; Jordan, B. Two inch GaN substrates fabricated by the near equilibrium ammonothermal (NEAT) method. Jpn. J. Appl. Phys. 2019, 58, SC1005. [Google Scholar] [CrossRef]
- Key, D.; Letts, E.; Hashimoto, T. Near-colorless free-standing bulk GaN c-plane substrates with excellent crystal quality grown by the ammonothermal method. In Proceedings of the 13th International Conference on Nitride Semiconductors, Washington, DC, USA, 7–12 July 2019. [Google Scholar]
- Letts, E.; Key, D.; Hashimoto, T. Reduction of crack density in ammonothermal bulk GaN growth. J. Cryst. Growth 2016, 456, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Letts, E.; Key, D.; Male, K.; Michaels, M.; Hoff, S. Ammonothermal Bulk GaN Growth and Its Processing. Sens. Mater. 2014, 26, 385–392. [Google Scholar]
- Letts, E.; Sun, Y.; Key, D.; Jordan, B.; Hashimoto, T. X-ray characterization technique for the assessment of surface damage in GaN wafers. J. Cryst. Growth 2018, 501, 13–17. [Google Scholar] [CrossRef]
- Iso, K.; Ikeda, H.; Gouda, R.; Mochizuki, T.; Izumisawa, S. Annihilation mechanism of V-shaped pits in c-GaN grown by hydride vapor-phase epitaxy. Jpn. J. Appl. Phys. 2019, 58, SC1011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, T.; Letts, E.R.; Key, D. Progress in Near-Equilibrium Ammonothermal (NEAT) Growth of GaN Substrates for GaN-on-GaN Semiconductor Devices. Crystals 2022, 12, 1085. https://doi.org/10.3390/cryst12081085
Hashimoto T, Letts ER, Key D. Progress in Near-Equilibrium Ammonothermal (NEAT) Growth of GaN Substrates for GaN-on-GaN Semiconductor Devices. Crystals. 2022; 12(8):1085. https://doi.org/10.3390/cryst12081085
Chicago/Turabian StyleHashimoto, Tadao, Edward R. Letts, and Daryl Key. 2022. "Progress in Near-Equilibrium Ammonothermal (NEAT) Growth of GaN Substrates for GaN-on-GaN Semiconductor Devices" Crystals 12, no. 8: 1085. https://doi.org/10.3390/cryst12081085
APA StyleHashimoto, T., Letts, E. R., & Key, D. (2022). Progress in Near-Equilibrium Ammonothermal (NEAT) Growth of GaN Substrates for GaN-on-GaN Semiconductor Devices. Crystals, 12(8), 1085. https://doi.org/10.3390/cryst12081085