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Abstract: This paper reviews the near-equilibrium ammonothermal (NEAT) growth of bulk gallium
nitride (GaN) crystals and reports the evaluation of 2′′ GaN substrates and 100 mmbulk GaN
crystal grown in our pilot production reactor. Recent progress in oxygen reduction enabled growing
NEAT GaN substrates with lower residual oxygen, coloration, and optical absorption. The oxygen
concentration was approximately 2 × 1018 cm−2, and the optical absorption coefficient was 1.3 cm−1

at 450 nm. Maps of full-width half maximum (FWHM) of X-ray diffraction rocking curveswere
generated for grown crystals and finished wafers. The X-ray rocking curve maps confirmed high-
quality and uniform microstructure across the entire surface of the bulk crystals and substrates.
The average FWHM of the 50 best bulk crystals from the recent batch was 28 ± 4 arcsec for the
002 diffraction and 34 ± 5 arcsec for the 201 diffraction, with an average radius of curvature of 20 m.
X-ray topography measured on both sides of the bulk crystals implied that the density of dislocations
wasreduced by one order of magnitude during the NEAT growth. A typical NEAT GaN substrate
shows dislocation density of about 2 × 105 cm−2.

Keywords: bulk GaN; ammonothermal growth; GaN substrate; NEAT method

1. Introduction

Gallium nitride (GaN) is one of the wide bandgap semiconductors. Successful com-
mercialization of GaN-based light-emitting diodes (LEDs) has promoted further research
and development of GaN for other applications, including laser diodes (LDs), high electron
mobility transistors (HEMTs), and power transistors. However, except for LDs, the majority
of GaN devices are developed using dissimilar substrates, such as sapphire, silicon carbide
(SiC), and silicon (Si). Usage of low-cost substrates, such as sapphire and silicon, is manda-
tory for applications in consumer electronics, where cost-reduction pressure is extremely
high. Nevertheless, new applications are currently emerging in the energy, defense, and
industrial sectors. Devices in these sectors require reliable high-power operation, which is
often more important than cost. Since heteroepitaxial growth generates threading disloca-
tions that degrade device performance and lifetime [1], homoepitaxial GaN substrates with
lower dislocation density are of interest despite their higher price.

Although hydride vapor phase epitaxy (HVPE) is currently used to produce the ma-
jority of GaN substrates in the marketplace, the method shows limitations in achieving
low dislocation density. Several non-vapor phase methods including high-pressure so-
lution growth [2–4], flux growth [5–10], and ammonothermal growth [11–22] have been
researched. We have developed the near-equilibrium ammonothermal (NEAT) method to
produce low-dislocation GaN substrates. The NEAT method is one type of ammonothermal
growth with growth conditions set near equilibrium. Utilizing a weak driving force enables
continuous growth for months through a reduction in spontaneous nucleation. The NEAT
condition achieves improvement in crystal quality over the growth period. The drawback
of a lower growth rate is offset by an increase in the number of bulk GaN crystals grown
per batch.
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In 2018, we successfully demonstrated 2′′ crack-free GaN substrates [23]. However,
GaN crystals grown by the ammonothermal method typically contained high levels of oxy-
gen in the order of 1019 cm−3. Previously reported 2′′ substrates also contained 1019 cm−3

of oxygen and the color was light brown [23]. In 2019, we successfully reduced the oxygen
concentration in small-sized NEAT bulk GaN [24]. Scaling up the same oxygen reduction
strategy to a large production reactor, we successfully grew reduced-color 2′′ bulk GaN
crystals. This paper reports the characterization of reduced-oxygen 2′′ NEAT GaN sub-
strates. In addition, by using the same pilot-production reactor, we attempted growth of 4′′

bulk GaN. We confirmed that the dislocation density in the 4′′ bulk GaN was similar to our
2′′ bulk GaN.

2. Experiment

GaN bulk crystals were grown by the NEAT method using our pilot-production high-
pressure reactor. Single crystalline GaN seed crystals, polycrystalline GaN and/or metallic
Ga, and an alkali-based mineralizer were loaded into the reactor. After sealing the reactor,
the air inside the reactor was pumped out and replaced with anhydrous ammonia. The
ammonia fill factor was 40~60%. Then, the reactor was heated with external heaters to
450–600 ◦C. The resulting ammonia pressure was 100~300 MPa. The driving force of crystal
growth was controlled with growth parameters including temperature, pressure, seed
location, and nutrient location. In the NEAT method, we controlled the driving force to
achieve consistent growth over a few months.

Seed crystals were prepared by HVPE. As reported previously, the microstructure of
seed crystals has a significant impact on the quality of grown bulk crystals [25]. Low-quality
seed crystals were filtered out from usage by evaluating a mapping of X-ray full-width half
maximums (FWHMs) over the wafer, as outlined below. Selected seeds typically showed
an average FWHM of 002 rocking curves less than 100 arcsec with a radius of curvature of
about 5–10 m. The lateral sizes of the seed crystals were 2′′, 2.3′′, or 4′′.

After the NEAT growth, photographs of grown crystals were taken with a digital
camera (Canon, Powershot SX510RX). The bulk crystals were rounded with a core drill
and a cylindrical grinder. After making a primary orientation flat on the m-plane and a
secondary orientation flat on the a-plane, the bulk GaN crystals were sliced into wafers with
a multiple wire saw. Sliced GaN blank wafers were shaped with a surface grinder, polished,
and finished with chemical mechanical polishing (CMP). Additional details regarding
the wafering process are outlined in a previous paper [26]. Removal of the subsurface
damaged layer after CMP was confirmed by measuring the intensity of the shoulders
of the 114 rocking curve in a grazing configuration [27]. The incident beam angle was
10.8662◦ to the Ga surface of the wafer. The intensity of shoulders was compared with
an empirically obtained standard peak from an unprocessed bulk GaN crystal with no
processing-related surface or subsurface damage. Surface morphology of samples was
observed with a Nomarski microscope and a tapping-mode atomic force microscope (AFM,
Asylum MFP-3D).

After the double-side CMP, optical absorption of the GaN substrates was measured
using a spectrophotometer (Shimazu UV-2401PC). Secondary ion mass spectroscopy (SIMS)
was measured at EAG Inc. The depth profile of oxygen was measured for smaller-sized
GaN crystals co-loaded in the production growth. The oxygen detection limit was about
8 × 1015 cm−3.

The qualities of seed crystals, grown bulk crystals, and processed wafers were char-
acterized with an X-ray diffractometer (PANalytical X’Pert) using a Cu Kα X-ray source
and a four-crystal Ge (002) monochromator. The X-ray source was operated at 40 mA
and 40 kV. Seeds, grown crystals, and processed wafers were routinely characterized by
mapping the FWHMs of X-ray rocking curves from the 002 and 201 diffractions over the
entire wafer. The spatial separation of each measuring point was 2 mm. To obtain sufficient
spatial separation of the incident X-ray beam, 0.3 mm × 0.3 mm slits were used after the
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monochromator. The estimated X-ray beam sizes on the sample were 0.3 mm × 1.0 mm
and 1.17 mm × 0.52 mm for the 002 and 201 measurements, respectively.

The X-ray topography was measured at the BL16B2 of SPring-8 synchrotron radiation
facility in Japan. The X-ray beam was monochromated with a Si (111) double crystal
monochromator. The X-ray beam with 9.16 keV of energy was irradiated onto the sample
with an incident angle of about 3◦, and the topography image from the (114) reflection at
2θ = 84.6◦ was recorded on an X-ray film.

3. Results and Discussion
3.1. Appearance, Coloration, and Optical Absorption

After the growth, photographs of the crystals were taken with a digital camera. Figure 1
shows bulk GaN crystals grown in one batch. As demonstrated here, we can grow many
crystals simultaneously by using a large-sized pressure reactor. Simultaneous growth of
many crystals offsets the low growth rate (approximately 30 µm per day). This is the
advantage of the ammonothermal method over the other growth methods.
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Figure 1. A photograph of bulk GaN crystals grown in one batch. The largest round crystal is
approximately 100 mm in diameter and the other round crystals have approximately 50 mm in
diameter. The larger hexagonal crystals have a side-to-side width of approximately 50 mm and the
smaller hexagonal crystals have a point-to-point width of approximately 50 mm.

Figure 2 shows a comparison of two crystals from different runs, before (left) and after
(right) implementation of our improved oxygen removal procedure in the pilot production
reactor. The picture shows that the crystal coloration was greatly reduced with better
oxygen removal in the growth environment. The residual oxygen in co-loaded smaller
crystals was 7.5 × 1018 cm−3 for the previous run and 1.5 × 1018 cm−3 for the latest run.

A photograph of a 2” GaN substrate after single-side CMP is presented in Figure 3.
The substrate looks almost colorless relative to the crystal it was sliced from, because the
thickness of the substrate is much thinner, about 400 µm. We confirmed removal of the
subsurface damaged layer in the finished wafer with grazing angle X-ray diffraction [27].
AFM images were not recorded for all substrates, because it potentially damages the
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finished surface. However, the surface typically shows an atomic step structure after CMP,
as reported previously [23].
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Figure 3. A photograph of 2′′ diameter lower-oxygen NEAT GaN substrate after single-side polishing.

Optical absorption was measured for double-side polished substrates. The absorption
coefficient of GaN substrates in the previous high-oxygen growth was 5.6 cm−1 at 450 nm,
whereas that from the reduced-oxygen growth was 1.3 cm−1 at 450 nm. These results
are in line with our previous results. Figure 4 shows the relationship between the optical
absorption coefficient at 450 nm and the residual oxygen concentration in the NEAT
substrates. As shown in the figure, the optical absorption shows direct correlation with
the residual oxygen concentrations for the oxygen concentration from 1.5 × 1018 cm−3 to
2.5 × 1020 cm−3.

3.2. X-ray Mapping

X-ray FWHM maps were measured for 2′′ NEAT GaN substrates after CMP. Figure 5a
shows an example of a FWHM map for 002 rocking curves, and Figure 5b shows a map
for 201 rocking curves. For this particular sample, average FWHMs were 28 arcsec for the
002 diffraction and 36 arcsec for the 201 diffraction. The higher 201 FWHM was due to
higher values in the right-edge region of the substrate. The average FWHM of the 50 best
bulk crystals from the batch shown in Figure 1 was 28 ± 4 arcsec for the 002 diffraction



Crystals 2022, 12, 1085 5 of 9

and 34 ± 5 arcsec for the 201 diffraction, with an average radius of curvature of 20 m. This
indicates the crystals are of excellent quality. We expect additional wafers from these bulk
crystals to have similar X-ray FWHM numbers to the bulk crystals they are sliced from.
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Figure 5. X-ray FWHM maps of a 2′′ NEAT GaN substrate. The numbers on each axis present position
from the center in mm, and the numbers in the boxes and next to the scale bar are the FWHM values
in arcsec. (a) FWHM of 002 rocking curves; (b) FWHM of 201 rocking curves.
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The X-ray maps for HVPE-grown substrates highlight the superior microstructure
uniformity of NEAT GaN substrates. Figure 6a shows an sample X-ray FWHM map for
002 rocking curves, and Figure 6b shows a map for 201 rocking curves. The HVPE substrate
shows more yellow and even red regions for both the 002 and 201 maps. Additionally,
some spots show double peaks and triple peaks in rocking curves, represented by a single
diagonal line and double diagonal lines in the box, respectively.
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Figure 6. X-ray FWHM maps of a 2′′ GaN substrate produced by HVPE. The numbers on each axis
present position from the center in mm, and the numbers in the boxes and next to the scale bar are
the FWHM value in arcsec. Boxes with a single diagonal line indicate a double peak in the rocking
curve and boxes with double diagonal lines indicate a triple peak in the rocking curve. (a) FWHM of
002 rocking curves; (b) FWHM of 201 rocking curves.

From these results, it is clear that measuring X-ray FWHM at one or several points
can yield a misleading evaluation of the GaN substrates. There are many green spots in
the HVPE GaN substrates. If the selected measurement spot falls into such green zones,
one will obtain narrow X-ray rocking curves and may expect that the substrate has high
quality everywhere. The X-ray FWHM mapping we employ is a powerful tool to evaluate
crystal quality and uniformity of GaN substrates. These X-ray FWHM maps demonstrate
the superior microstructure of 2′′ NEAT GaN substrates.

3.3. Growth and Characterization of 4′′ Bulk GaN Crystal

A photo of the 100 mm diameter bulk GaN crystal after rounding and flat formation
is presented in Figure 7. The dark stain around the edge is a roughened surface caused
by precipitation of the alkali mineralizer during cool-down at the end of the growth. We
surmise that the concentrated alkali metal-based compound etched the surface of the crystal.
The oxygen concentration was 1.32 × 1018 cm−3 on the top surface of the crystal, i.e., the
final oxygen concentration at the end of the growth. The dots did not extend through the
thickness of the growth. They were holes in the HVPE seed that closed early in the NEAT
growth. The ability of the NEAT growth to close holes is a clear advantage over HVPE,
where holes grow larger with time, limiting the run time and growth thickness [28]. Holes
in the substrate cause problems during device fabrication, and substrates with holes are
sold at a lower price tier.
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Figure 7. A photograph of 100 mm-diameter bulk GaN crystals grown by the NEAT method.

X-ray topography was measured on both sides of the boule (Figure 8). Since the
Ga polar surface of the seed crystal was masked during the growth, c-plane growth only
occurred on the N-polar face. Therefore, the Ga-polar side of the boule exposed the seed.
Figure 8a shows an X-ray topography image of the as-grown N-polar face of the boule. Due
to the lattice bow of the sample, the image area with constructive reflection is sandwiched
between off-Bragg regions covered with many white islands (top and bottom regions in the
image). The white dots in the dark region of the image (one example is indicated with a
white arrow), are contrasts of threading dislocations. Although detailed analysis is needed,
we think that the majority of the dislocations are either edge or mixed dislocations. The
dislocation density counted from the two areas indicated with white 200 × 200 µm squares
was about 2 × 105 cm−2 and 5 × 105 cm−2.
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Figure 8. X-ray topography from the 100 mm-bulk GaN crystal. (a) From as-grown N-polar surface;
(b) from Ga-polar surface which exposes Ga-face of the HVPE seed.
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Figure 8b shows an X-ray topography image from the Ga-polar surface of the boule,
which was the seed crystal. As shown in the image, the defect density was so high that it
was practically impossible to adequately distinguish one dislocation contrast from another;
hence, the estimated dislocation density was greater than 106 cm−2. In addition, the seed
image shows a macro defect, as indicated with a white arrow. It was confirmed that the
dislocation density was improved from >106 cm−2 level to 2~5 × 105 cm−2 during the
NEAT growth of 100 mm bulk GaN.

4. Conclusions

Bulk GaN crystals of 2′′ and 4′′ were grown by the NEAT method. The 2′′ GaN
substrates produced by the NEAT method were characterized with optical observation
methods, X-ray rocking curves, and X-ray topography. The latest NEAT GaN substrate had
a reduced oxygen concentration of 1.5 × 1018 cm−3. The optical absorption coefficient at
450 nm was 1.3 cm−1, which followed the trend line of the previously reported relation-
ship between the absorption coefficient and oxygen concentration. FWHM mapping of
X-ray rocking curves and X-ray topography both demonstrated high degrees of crystalline
perfection in the 2′′ substrates. The dislocation density was estimated to be low-105 cm−2

from the X-ray topography. A 100 mm bulk GaN crystal grown by the NEAT method also
showed reduced dislocation density (2~5 × 105 cm−2) from that of the seed crystal.
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