Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts’ Characterization
2.1.1. X-ray Fluorescence (XRF) and X-ray Diffraction (XRD)
2.1.2. Spectroscopy Studies (FTIR, UV-Vis, Raman, and 29Si MAS-NMR)
2.1.3. Morphological (TEM and HRTEM), Textural (Surface Area and Pore Volume), and Thermal Analyses (TG/DTG/DSC)
2.2. Catalytic Tests
3. Materials and Methods
3.1. Materials
3.2. Synthesis of MCM-41 Materials
3.3. Characterization of the Catalysts
3.4. Liquid-Phase Oxidation of Benzyl Alcohol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciriminna, R.; Pagliaro, M. Green chemistry in the fine chemicals and pharmaceutical industries. Org. Process Res. Dev. 2013, 17, 1479–1484. [Google Scholar] [CrossRef]
- de Oliveira, N.B. Inovação e produção na química fina. Quim. Nova 2005, 28, S79–S85. [Google Scholar] [CrossRef]
- O desempenho da indústria quimica em 2017. Available online: http://www.webcitation.org/75xqkk7e9 (accessed on 5 February 2019).
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E Factor: Fifteen years on. Green Chem. 2007, 9, 1273–1283. [Google Scholar] [CrossRef]
- Brühne, F.; Wright, E. Benzaldehyde. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Elvers, B., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Volume 5, pp. 223–235. [Google Scholar]
- Benzaldehyde Market for Aroma Chemicals, Pharmaceuticals, Agriculture, Coatings and Other End-Users—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2015–2023. Available online: http://www.webcitation.org/75xscDvAV (accessed on 5 February 2019).
- Shearon, W.H.; Hall, H.E.; Stevens, J.E. Fine chemicals from coal. Ind. Eng. Chem. 1949, 41, 1812–1820. [Google Scholar] [CrossRef]
- Sheldon, R.A. Recent advances in green catalytic oxidations of alcohols in aqueous media. Catal. Today 2015, 247, 4–13. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Ribeiro, A.P.C.; Alegria, E.C.B.A.; Martins, N.M.R.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Catalytic oxidation of alcohols: Recent advances. Adv. Organomet. Chem. 2015, 63, 91–174. [Google Scholar]
- Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D.M.; Knight, D.W.; Bethell, D.; Hutchings, G.J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 2014, 5, 3332–3337. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Rossi, M. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J. Catal. 2008, 260, 384–386. [Google Scholar] [CrossRef]
- Enache, D.I.; Edwards, J.K.; Landon, P.; Solsona-Espriu, B.; Carley, A.F.; Herzing, A.A.; Watanabe, M.; Kiely, C.J.; Knight, D.W.; Hutchings, G.J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.; Lou, L.-L.; Zhang, C.; Zhang, Y.; Liu, S. Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts. J. Mol. Catal. A Chem. 2009, 306, 123–129. [Google Scholar] [CrossRef]
- Bansal, V.K.; Thankachan, P.P.; Prasad, R. Oxidation of benzyl alcohol and styrene using H2O2 catalyzed by tetraazamacrocycle complexes of Cu(II) and Ni(II) encapsulated in zeolite-Y. Appl. Catal. A Gen. 2010, 381, 8–17. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Y.; Long, Z.; Wang, X.; Li, J.; Wang, J. Mesoporous polyoxometalate-based ionic hybrid as a triphasic catalyst for oxidation of benzyl alcohol with H2O2 on water. ACS Appl. Mater. Interfaces 2014, 6, 4438–4446. [Google Scholar] [CrossRef] [PubMed]
- Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095. [Google Scholar] [CrossRef]
- Corma, A.; García, H. Lewis Acids as Catalysts in Oxidation Reactions: From Homogeneous to Heterogeneous Systems. Chem. Rev. 2002, 102, 3837–3892. [Google Scholar] [CrossRef] [PubMed]
- Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J. Org. Chem. 1988, 53, 3587–3593. [Google Scholar] [CrossRef]
- Venturello, C.; D’Aloisio, R.; Bart, J.C.J.; Ricci, M. A New peroxotungsten heteropoly anion with special oxidizing properties: Synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-). J. Mol. Catal. 1985, 32, 107–110. [Google Scholar] [CrossRef]
- Kresge, C.T.; Roth, W.J. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 2013, 42, 3663–3670. [Google Scholar] [CrossRef]
- Alothman, A.Z. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Linares, N.; Silvestre-Albero, A.M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 2014, 43, 7681–7717. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-P.; Mou, C.-Y. Salt effect in post-synthesis hydrothermal treatment of MCM-41. Microporous Mesoporous Mater. 2002, 55, 69–80. [Google Scholar] [CrossRef]
- Lin, H.-P.; Kao, C.-P.; Mou, C.-Y. Counterion and alcohol effect in the formation of mesoporous silica. Microporous Mesoporous Mater. 2001, 48, 135–141. [Google Scholar] [CrossRef]
- Leontidis, E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci. 2002, 7, 81–91. [Google Scholar] [CrossRef]
- Singh, S.; Patel, A. Environmentally benign oxidations of alkenes and alcohols to corresponding aldehydes over anchored phosphotungstates: Effect of supports as well as oxidants. Catal. Lett. 2016, 146, 1059–1072. [Google Scholar] [CrossRef]
- Patel, A.; Singh, S. Undecatungstophosphate anchored to MCM-41: An ecofriendly and efficient bifunctional solid catalyst for non-solvent liquid-phase oxidation as well as esterification of benzyl alcohol. Microporous Mesoporous Mater. 2014, 195, 240–249. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Selective oxidation of benzyl alcohol catalyzed by Cr(salen) complexes immobilized on MCM-41. J. Mol. Catal. A Chem. 2007, 276, 86–94. [Google Scholar] [CrossRef]
- Hamza, A.; Srinivas, D. Selective oxidation of benzyl alcohol over copper phthalocyanine immobilized on MCM-41. Catal. Lett. 2009, 128, 434–442. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.P.; Vishwanathan, V.; Chary, K.V.R. Synthesis, characterization, and reactivity of Au/MCM-41 catalysts prepared by homogeneous deposition–precipitation (HDP) method for vapor phase oxidation of benzyl alcohol. Mater. Res. Bull. 2015, 61, 105–112. [Google Scholar] [CrossRef]
- Pal, N.; Cho, E.-B.; Kim, D. Synthesis of ordered mesoporous silica/ceria–silica composites and their high catalytic performance for solvent-free oxidation of benzyl alcohol at room temperature. RSC Adv. 2014, 4, 9213–9222. [Google Scholar] [CrossRef]
- Cánepa, A.L.; Elías, V.R.; Vaschetti, V.M.; Sabre, E.V.; Eimer, G.A.; Casuscelli, S.G. Selective oxidation of benzyl alcohol through eco-friendly processes using mesoporous V-MCM-41, Fe-MCM-41 and Co-MCM-41 materials. Appl. Catal. A Gen. 2017, 545, 72–78. [Google Scholar] [CrossRef]
- Dang, T.T.H.; Seeburg, D.; Radnik, J.; Kreyenschulte, C.; Atia, H.; Vu, T.T.H.; Wohlrab, S. Influence of V-sources on the catalytic performance of VMCM-41 in the selective oxidation of methane to formaldehyde. Catal. Commun. 2018, 103, 56–59. [Google Scholar] [CrossRef]
- Corma, A.; Navarro, M.T.; Nemeth, L.; Renz, M. Sn-MCM-41—A heterogeneous selective catalyst for the Baeyer–Villiger oxidation with hydrogen peroxide. Chem. Commun. 2001, 2190–2191. [Google Scholar] [CrossRef]
- Yao, W.; Chen, Y.; Min, L.; Fang, H.; Yan, Z.; Wang, H.; Wang, J. Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. J. Mol. Catal. A Chem. 2006, 246, 162–166. [Google Scholar] [CrossRef]
- González Vargas, O.A.; de los Reyes Heredia, J.A.; Montesinos Castellanos, A.; Chen, L.F.; Wang, J.A. Cerium incorporating into MCM-41 mesoporous materials for CO oxidation. Mater. Chem. Phys. 2013, 139, 125–133. [Google Scholar] [CrossRef]
- Ghesti, G.F.; de Macedo, J.L.; Parente, V.C.; Dias, J.A.; Dias, S.C. Synthesis, characterization and reactivity of Lewis acid/surfactant cerium trisdodecylsulfate catalyst for transesterification and esterification reactions. Appl. Catal. A Gen. 2009, 355, 139–147. [Google Scholar] [CrossRef]
- Cesteros, Y.; Haller, G.L. Several factors affecting Al-MCM-41 synthesis. Microporous Mesoporous Mater. 2001, 43, 171–179. [Google Scholar] [CrossRef]
- Ghiaci, M.; Seyedeyn-Azad, F.; Kia, R. Fast and efficient synthesis of ZSM-5 in a broad range of SiO2/Al2O3 without using seeding gel. Mater. Res. Bull. 2004, 39, 1257–1264. [Google Scholar] [CrossRef]
- Zhao, D.; Nie, C.; Zhou, Y.; Xia, S.; Huang, L.; Li, Q. Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity. Catal. Today 2001, 68, 11–20. [Google Scholar] [CrossRef]
- Reddy, K.M.; Song, C. Effect of Al sources on the synthesis and acidic characteristics of mesoporous aluminosilicates of MCM-41 type. In Studies in Surface Science and Catalysis; Bonneviot, L., Béland, F., Danumah, C., Giasson, S., Kaliaguine, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; Volume 117, pp. 291–299. [Google Scholar]
- Matsumoto, A.; Chen, H.; Tsutsumi, K.; Grün, M.; Unger, K. Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization. Microporous Mesoporous Mater. 1999, 32, 55–62. [Google Scholar] [CrossRef]
- Lin, W.; Cai, Q.; Pang, W.; Yue, Y.; Zou, B. New mineralization agents for the synthesis of MCM-41. Microporous Mesoporous Mater. 1999, 33, 187–196. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef] [Green Version]
- El Haskouri, J.; Morales, J.M.; Ortiz de Zárate, D.; Fernández, L.; Latorre, J.; Guillem, C.; Beltrán, A.; Beltrán, D.; Amorós, P. Nanoparticulated silicas with bimodal porosity: Chemical control of the pore sizes. Inorg. Chem. 2008, 47, 8267–8277. [Google Scholar] [CrossRef]
- Zhan, W.; Lu, G.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, Y.; Zhang, Z.; Liu, X. Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. J. Rare Earths 2008, 26, 515–522. [Google Scholar] [CrossRef]
- de Souza, L.K.C.; Pardauil, J.J.R.; Zamian, J.R.; da Rocha Filho, G.N.; Barrado, C.M.; Angélica, R.S.; da Costa, C.E.F. Rapid synthesis and characterization of CeMCM-41. Powder Technol. 2012, 229, 1–6. [Google Scholar] [CrossRef]
- Bing, J.; Li, L.; Lan, B.; Liao, G.; Zeng, J.; Zhang, Q.; Li, X. Synthesis of cerium-doped MCM-41 for ozonation of p-chlorobenzoic acid in aqueous solution. Appl. Catal. B 2012, 115–116, 16–24. [Google Scholar] [CrossRef]
- Laha, S.C.; Mukherjee, P.; Sainkar, S.R.; Kumar, R. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties. J. Catal. 2002, 207, 213–223. [Google Scholar] [CrossRef]
- Barkam, S.; Ortiz, J.; Saraf, S.; Eliason, N.; McCormack, R.; Das, S.; Gupta, A.; Neal, C.; Petrovici, A.; Hanson, C.; et al. Modulating the catalytic activity of cerium oxide nanoparticles with the anion of the precursor salt. J. Phys. Chem. C 2017, 121, 20039–20050. [Google Scholar] [CrossRef]
- Mihailova, B.; Valtchev, V.; Mintova, S.; Faust, A.C.; Petkov, N.; Bein, T. Interlayer stacking disorder in zeolite beta family: A Raman spectroscopic study. Phys. Chem. Chem. Phys. 2005, 7, 2756–2763. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Yao, Z.; Chen, Z.; Hong, M.; Zhu, R.; Liang, Y.; Zhao, J. Transition-metal doped ceria microspheres with nanoporous structures for CO oxidation. Sci. Rep. 2016, 6, 23900. [Google Scholar] [CrossRef]
- Khalil, K.M.S. Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J. Colloid Interface Sci. 2007, 315, 562–568. [Google Scholar] [CrossRef]
- Kolodziejski, W.; Corma, A.; Navarro, M.-T.; Pérez-Pariente, J. Solid-state NMR study of ordered mesoporous aluminosilicate MCM-41 synthesized on a liquid-crystal template. Solid State Nucl. Magn. Reson. 1993, 2, 253–259. [Google Scholar] [CrossRef]
- Chao, K.J.; Wu, C.N.; Chang, H.; Lee, L.J.; Hu, S.-f. Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. J. Phys. Chem. B 1997, 101, 6341–6349. [Google Scholar] [CrossRef]
- Hill, P.J.; Shrestha, K.L.; Ishihara, S.; Ji, Q.; Ariga, K. Self-assembly: From amphiphiles to chromophores and beyond. Molecules 2014, 19, 8589–8609. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Burkett, S.L.; Li, H.-X.; Davis, M.E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Mater. 1993, 2, 27–34. [Google Scholar] [CrossRef]
- Dendramis, A.L.; Schwinn, E.W.; Sperline, R.P. A surface-enhanced Raman scattering study of CTAB adsorption on copper. Surf. Sci. 1983, 134, 675–688. [Google Scholar] [CrossRef]
- Snyder, R.G.; Strauss, H.L.; Elliger, C.A. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J. Phys. Chem. 1982, 86, 5145–5150. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Ducey, M.W.; Pemberton, J.E. Quantitative correlation of Raman spectral indicators in determining conformational order in alkyl chains. J. Phys. Chem. A 2002, 106, 6991–6998. [Google Scholar] [CrossRef]
- Jamieson Lauren, E.; Li, A.; Faulds, K.; Graham, D. Ratiometric analysis using Raman spectroscopy as a powerful predictor of structural properties of fatty acids. R. Soc. Open Sci. 2018, 5, 181483. [Google Scholar] [CrossRef]
- Terribile, D.; Trovarelli, A.; Llorca, J.; de Leitenburg, C.; Dolcetti, G. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J. Catal. 1998, 178, 299–308. [Google Scholar] [CrossRef]
- Hayes, S.A.; Yu, P.; O’Keefe, T.J.; O’Keefe, M.J.; Stoffer, J.O. The phase stability of cerium species in aqueous systems: I. E-pH diagram for the Ce-HClO4–H2O system. J. Electrochem. Soc. 2002, 149, C623–C630. [Google Scholar] [CrossRef]
- Bumajdad, A.; Eastoe, J.; Mathew, A. Cerium oxide nanoparticles prepared in self-assembled systems. Adv. Colloid Interface Sci. 2009, 147–148, 56–66. [Google Scholar] [CrossRef]
- Bouchaud, B.; Balmain, J.; Bonnet, G.; Pedraza, F. pH-distribution of cerium species in aqueous systems. J. Rare Earths 2012, 30, 559–562. [Google Scholar] [CrossRef]
- Peppard, D.F.; Mason, G.W.; Hucher, I. Stability constants of certain lanthanide(III) and actinide(III) chloride and nitrate complexes. J. Inorg. Nucl. Chem. 1962, 24, 881–888. [Google Scholar] [CrossRef]
- Berr, S.; Jones, R.R.M.; Johnson, J.S. Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering. J. Phys. Chem. 1992, 96, 5611–5614. [Google Scholar] [CrossRef]
- Ye, F.; Vallhov, H.; Qin, J.; Daskalaki, E.; Sugunan, A.; Toprak, M.S.; Fornara, A.; Gabrielsson, S.; Scheynius, A.; Muhammed, M. Synthesis of high aspect ratio gold nanorods and their effects on human antigen presenting dendritic cells. Int. J. Nanotechnol. 2011, 8, 22. [Google Scholar] [CrossRef]
- Gamboa, C.; Sepulveda, L.; Soto, R. Free energies of transfer of anions from water to cationic micelles from ionic exchange measurements. J. Phys. Chem. 1981, 85, 1429–1434. [Google Scholar] [CrossRef]
- Xiong, G.; Li, C.; Li, H.; Xin, Q.; Feng, Z. Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy. Chem. Commun. 2000, 677–678. [Google Scholar] [CrossRef] [Green Version]
- Casas-Orozco, D.; Alarcón, E.; Carrero, C.A.; Venegas, J.M.; McDermott, W.; Klosterman, E.; Hermans, I.; Villa, A.-L. Influence of tin loading and pore size of Sn/MCM-41 catalysts on the synthesis of nopol. Ind. Eng. Chem. Res. 2017, 56, 6590–6598. [Google Scholar] [CrossRef]
- Li, C. Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J. Catal. 2003, 216, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, F.; Lu, J.-Q.; Luo, M.-F. Study of defect sites in Ce1–xMxO2−δ (x = 0.2) solid solutions using Raman spectroscopy. J. Phys. Chem. A 2011, 115, 7972–7977. [Google Scholar] [CrossRef]
- He, H.; Yang, P.; Li, J.; Shi, R.; Chen, L.; Zhang, A.; Zhu, Y. Controllable synthesis, characterization, and CO oxidation activity of CeO2 nanostructures with various morphologies. Ceram. Int. 2016, 42, 7810–7818. [Google Scholar] [CrossRef]
- Soren, S.; Bessoi, M.; Parhi, P. A rapid microwave initiated polyol synthesis of cerium oxide nanoparticle using different cerium precursors. Ceram. Int. 2015, 41, 8114–8118. [Google Scholar] [CrossRef]
- Ghiaci, M.; Abbaspur, A.; Kia, R.; Belver, C.; Trujillano, R.; Rives, V.; Vicente, M.A. Vapor-phase alkylation of toluene by benzyl alcohol on H3PO4-modified MCM-41 mesoporous silicas. Catal. Commun. 2007, 8, 49–56. [Google Scholar] [CrossRef]
- Fu, Y.; Zhan, W.; Guo, Y.; Wang, Y.; Liu, X.; Guo, Y.; Wang, Y.; Lu, G. Effect of surface functionalization of cerium-doped MCM-48 on its catalytic performance for liquid-phase free-solvent oxidation of cyclohexane with molecular oxygen. Microporous Mesoporous Mater. 2015, 214, 101–107. [Google Scholar] [CrossRef]
- Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef] [Green Version]
- Zdravković, J.; Simović, B.; Golubović, A.; Poleti, D.; Veljković, I.; Šćepanović, M.; Branković, G. Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors. Ceram. Int. 2015, 41, 1970–1979. [Google Scholar] [CrossRef]
- Zhao, X.S.; Lu, G.Q.; Whittaker, A.K.; Millar, G.J.; Zhu, H.Y. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, pyridine-TPD, and TGA. J. Phys. Chem. B 1997, 101, 6525–6531. [Google Scholar] [CrossRef]
- Varache, M.; Bezverkhyy, I.; Saviot, L.; Bouyer, F.; Baras, F.; Bouyer, F. Optimization of MCM-41 type silica nanoparticles for biological applications: Control of size and absence of aggregation and cell cytotoxicity. J. Non-Cryst. Solids 2015, 408, 87–97. [Google Scholar] [CrossRef]
- Vantomme, A.; Yuan, Z.-Y.; Du, G.; Su, B.-L. Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods. Langmuir 2005, 21, 1132–1135. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, D.; Shi, L. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. J. Solid State Chem. 2008, 181, 1298–1306. [Google Scholar] [CrossRef]
- Galarneau, A.; Villemot, F.; Rodriguez, J.; Fajula, F.; Coasne, B. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir 2014, 30, 13266–13274. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 17. [Google Scholar] [CrossRef]
- Anderson, M.W. Solid-state NMR as a probe of porous catalysts and catalytic processes. Top. Catal. 1996, 3, 195–220. [Google Scholar] [CrossRef]
- Kleitz, F.; Schmidt, W.; Schüth, F. Evolution of mesoporous materials during the calcination process: Structural and chemical behavior. Microporous Mesoporous Mater. 2001, 44–45, 95–109. [Google Scholar] [CrossRef]
- de Souza, L.K.C.; Pardauil, J.J.R.; Zamian, J.R.; da Rocha Filho, G.N.; da Costa, C.E.F. Influence of the incorporated metal on template removal from MCM-41 type mesoporous materials. J. Therm. Anal. Calorim. 2011, 106, 355–361. [Google Scholar] [CrossRef]
- Selvaraj, M.; Park, D.W.; Ha, C.S. Well ordered two-dimensional mesoporous CeSBA-15 synthesized with improved hydrothermal stability and catalytic activity. Microporous Mesoporous Mater. 2011, 138, 94–101. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Jhung, S.H.; Hwang, Y.K.; Kim, D.K.; Panchenko, V.N.; Melgunov, M.S.; Chesalov, Y.A.; Chang, J.S. Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: Synthesis, characterization, and catalytic application. Appl. Catal. A Gen. 2007, 317, 1–10. [Google Scholar] [CrossRef]
- Wang, Z.; Balkus, K.J. Liquid phase propylene oxidation with tert-butyl hydroperoxide over titanium containing wrinkled mesoporous silica. Catal. Commun. 2017, 96, 15–18. [Google Scholar] [CrossRef]
- Grün, M.; Unger, K.K.; Matsumoto, A.; Tsutsumi, K. Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology. Microporous Mesoporous Mater. 1999, 27, 207–216. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company, Inc.: Reading, PS, USA, 1967; pp. 81–349. [Google Scholar]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 0903–0922. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, N.; Koyano, K.A.; Tanaka, Y.; Nakata, S.; Hashimoto, K.; Tatsumi, T. Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. Microporous Mesoporous Mater. 2003, 59, 43–52. [Google Scholar] [CrossRef]
Sample | d200 (nm) | d100 (nm) 1 | a (nm) 2 | Ce content (wt.%) | Si/Ce Molar Ratio |
---|---|---|---|---|---|
Si-MCM-41 | 1.94 | 3.88 | 4.48 | - | ∞ |
Ce-MCM-Cl | 2.00 | 4.00 | 4.61 | 5.89 | 31 |
Ce-MCM-NO3 | 2.15 | 4.30 | 4.97 | 5.24 | 36 |
As-Synthesized Sample | I1080/I1120 1 | I2920/I2850 2 |
---|---|---|
A-Si-MCM-41 | 1.994 | 0.731 |
A-Ce-MCM-Cl | 2.310 | 0.760 |
A-Ce-MCM-NO3 | 2.024 | 0.747 |
Sample | Q2 (%) 1 | Q3 (%) 1 | Q4 (%) 1 | Q4/(Q2 + Q3) | Silanol (Si Molar%) 2 |
---|---|---|---|---|---|
Si-MCM-41 | 12.4 | 33.1 | 54.5 | 1.20 | 57.9 |
Ce-MCM-Cl | 19.3 | 21.2 | 59.5 | 1.47 | 59.7 |
Ce-MCM-NO3 | 0.4 | 25.6 | 74.0 | 2.85 | 26.4 |
Properties | Si-MCM-41 | Ce-MCM-Cl | Ce-MCM-NO3 |
---|---|---|---|
Stotal (m2 g−1) 1 | 1032.1 | 909.7 | 907.0 |
Sext (m2 g−1) 2 | 158.1 | 267.6 | 252.4 |
Smeso (m2 g−1) 3 | 874.0 | 642.1 | 654.6 |
Vtotal (cm3 g−1) 4 | 0.92 | 0.87 | 0.90 |
Vmeso (cm3 g−1) 5 | 0.80 | 0.68 | 0.71 |
PD (nm) 6 | 3.40 | 3.43 | 3.64 |
WT (nm) 7 | 1.08 | 1.18 | 1.33 |
Runs | Oxidant | BzOH:Oxidant Molar Ratio | T (°C) | Catalyst Amount (wt.%) | C (%) 1 | S (%) 2 | Y (%) 3 | TON4 |
---|---|---|---|---|---|---|---|---|
run 1 | H2O2 | 1:1 | 70 | 10 | 0.80 | 50.0 | 0.40 | 1.85 |
run 2 | TBHP | 1:1 | 70 | 10 | 33.6 | 65.4 | 22.0 | 74.0 |
run 3 | DTBP | 1:1 | 70 | 10 | 2.00 | 70.0 | 1.40 | 4.39 |
run 4 5 | TBHP | 1:1 | 70 | 10 | 15.1 | 89.0 | 13.4 | 27.3 |
run 5 6 | TBHP | 1:1 | 70 | 10 | 7.00 | 99.0 | 6.93 | 15.4 |
run 6 | TBHP | 2:1 | 70 | 10 | 25.8 | 74.9 | 19.4 | 56.8 |
run 7 | TBHP | 1:2 | 70 | 10 | 34.6 | 63.5 | 22.0 | 76.1 |
run 8 | TBHP | 1:1 | 80 | 10 | 54.3 | 48.7 | 26.4 | 119.4 |
run 9 | TBHP | 1:1 | 90 | 10 | 60.2 | 41.0 | 24.7 | 132.3 |
run 10 | TBHP | 1:1 | 80 | 5 | 35.9 | 57.1 | 20.5 | 151.8 |
run 11 | TBHP | 1:1 | 80 | 15 | 43.0 | 50.0 | 21.5 | 62.2 |
run 12 7 | TBHP | 1:1 | 80 | 10 | 0.50 | 100.0 | 0.50 | n.a. 8 |
Runs | Oxidant | BzOH:Oxidant Molar Ratio | T (°C) | Catalyst Amount (wt.%) | C (%) 1 | S (%) 2 | Y (%) 3 | TON4 |
---|---|---|---|---|---|---|---|---|
run 1 | H2O2 | 1:1 | 70 | 10 | 1.30 | 30.8 | 0.40 | 3.23 |
run 2 | TBHP | 1:1 | 70 | 10 | 23.2 | 75.6 | 17.5 | 49.5 |
run 3 | DTBP | 1:1 | 70 | 10 | 1.30 | 32.0 | 0.42 | 3.17 |
run 4 5 | TBHP | 1:1 | 70 | 10 | 14.1 | 92.0 | 13.0 | 30.1 |
run 5 6 | TBHP | 1:1 | 70 | 10 | 14.5 | 59.7 | 8.60 | 35.8 |
run 6 | TBHP | 2:1 | 70 | 10 | 19.7 | 80.3 | 15.9 | 48.8 |
run 7 | TBHP | 1:2 | 70 | 10 | 27.7 | 64.5 | 17.8 | 68.4 |
run 8 | TBHP | 1:1 | 80 | 10 | 38.5 | 56.5 | 21.7 | 95.1 |
run 9 | TBHP | 1:1 | 90 | 10 | 52.5 | 40.8 | 21.4 | 129.6 |
run 10 | TBHP | 1:1 | 80 | 5 | 33.7 | 64.3 | 21.7 | 160.3 |
run 11 | TBHP | 1:1 | 80 | 15 | 63.7 | 31.9 | 20.3 | 103.5 |
run 12 7 | TBHP | 1:1 | 80 | 5 | 0.35 | 100.0 | 0.35 | n.a. 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiube, C.M.; Oliveira, K.V.d.; Macedo, J.L.d. Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol. Catalysts 2019, 9, 377. https://doi.org/10.3390/catal9040377
Aiube CM, Oliveira KVd, Macedo JLd. Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol. Catalysts. 2019; 9(4):377. https://doi.org/10.3390/catal9040377
Chicago/Turabian StyleAiube, Carlos M., Karolyne V. de Oliveira, and Julio L. de Macedo. 2019. "Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol" Catalysts 9, no. 4: 377. https://doi.org/10.3390/catal9040377
APA StyleAiube, C. M., Oliveira, K. V. d., & Macedo, J. L. d. (2019). Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol. Catalysts, 9(4), 377. https://doi.org/10.3390/catal9040377