Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Activity
2.2. Characterization of As-Prepared and Used Catalysts
2.3. Charge Separation and Transfer
3. Materials and Methods
3.1. Catalyst Synthesis
3.2. Catalyst Characterization
3.3. In-Situ Electron Paramagnetic Resonance Spectroscopy Studies
3.4. Photocatalytic Hydrogen Evolution Tests
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Takanabe, K.; Domen, K. Preparation of Inorganic Photocatalytic Materials for Overall Water Splitting. ChemCatChem 2012, 4, 1485–1497. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Li, J.-X.; Li, Z.-J.; Li, X.-B.; Fan, X.-B.; Zhang, L.-P.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C3N4 for Photocatalytic O2 Evolution. ACS Catal. 2015, 5, 6973–6979. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Wang, X.; Huang, Y.; Zeng, M.; Xu, J. Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J. Mater. Chem. A 2015, 3, 10119–10126. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Han, J.; Zhou, T.; Xu, R. Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications. Catal. Sci. Technol. 2015, 5, 5048–5061. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 12868–12884. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Li, J.; Xing, C.; Zhang, Z.; Meng, S.; Chen, M. Two-Dimensional CaIn2S4/g-C3N4 Heterojunction Nanocomposite with Enhanced Visible-Light Photocatalytic Activities: Interfacial Engineering and Mechanism Insight. ACS Appl. Mater. Interfaces 2015, 7, 19234–19242. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, Z.; Zhang, Z.; Ao, D. Highly efficient photocatalytic H2 evolution from water over CdLa2S4/mesoporous g-C3N4 hybrids under visible light irradiation. Appl. Catal. B Environ. 2016, 192, 234–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer. Sci. Rep. 2016, 6, 19221–19231. [Google Scholar] [CrossRef] [PubMed]
- Kailasam, K.; Epping, J.D.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride-silica composites by a combined sol-gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674. [Google Scholar] [CrossRef]
- Lennox, A.J.J.; Bartels, P.; Pohl, M.M.; Junge, H.; Beller, M. In situ photodeposition of copper nanoparticles on TiO2: Novel catalysts with facile light-induced redox cycling. J. Catal. 2016, 340, 177–183. [Google Scholar] [CrossRef]
- Li, K.; Xu, J.; Zhang, X.; Peng, T.; Li, X. Low-temperature preparation of AgIn-S8/TiO2 heterojunction nanocomposite with efficient visible-light-driven hydrogen production. Int. J. Hydrogen Energy 2013, 38, 15965–15975. [Google Scholar] [CrossRef]
- Li, K.; Chai, B.; Peng, T.; Mao, J.; Zan, L. Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light. ACS Catal. 2013, 3, 170–177. [Google Scholar] [CrossRef]
- Chen, D.; Ye, J. Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J. Phys. Chem. Solids 2007, 68, 2317–2320. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, J.; Zhang, X.; Gao, W.; Jin, R.; Guan, N.; Li, Y. Synthesis of Titania-Supported Platinum Catalyst: The Effect of pH on Morphology Control and Valence State during Photodeposition. Langmuir 2004, 20, 9329–9334. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, D.; Karnahl, M.; Tschierlei, S.; Kailasam, K.; Schneider, M.; Radnik, J.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; et al. Structure-Activity Relationships in Bulk Polymeric and Sol-Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chem. Mater. 2014, 26, 1727–1733. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Nong, Q.; Lin, H.; Teng, B.; Zhang, Y.; Zhao, L.; Wu, T.; He, Y. Enhanced visible-light photoactivity of g-C3N4 via Zn2SnO4 modification. Appl. Surf. Sci. 2015, 329, 143–149. [Google Scholar] [CrossRef]
- Chen, W.; Huang, T.; Hua, Y.-X.; Liu, T.-Y.; Liu, X.-H.; Chen, S.-M. Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. J. Hazard. Mater. 2016, 320, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yan, J.; Xu, Y.; Song, Y.; Li, H.; Xia, J.; Huang, C.; Wan, H. Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B Environ. 2013, 129, 182–193. [Google Scholar] [CrossRef]
- Li, T.; Zhao, L.; He, Y.; Cai, J.; Luo, M.; Lin, J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B Environ. 2013, 129, 255–263. [Google Scholar] [CrossRef]
- Nashim, A.; Martha, S.; Parida, K.M. Heterojunction conception of n-La2Ti2O7/p-CuO in the limelight of photocatalytic formation of hydrogen under visible light. RSC Adv. 2014, 4, 14633–14643. [Google Scholar] [CrossRef]
- Tyborski, T.; Merschjann, C.; Orthmann, S.; Yang, F.; Lux-Steiner, M.C.; Schedel-Niedrig, T. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications. J. Phys. Condens. Matter 2013, 25, 395402–395408. [Google Scholar] [CrossRef] [PubMed]
- Isakozawa, S.; Nagaoki, I.; Watabe, A.; Nagakubo, Y.; Saito, N.; Matsumoto, H.; Zhang, X.F.; Taniguchi, Y.; Baba, N. Design of a 300-kV gas environmental transmission electron microscope equipped with a cold field emission gun. Microsc. Anal. 2016, 65, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Indra, A.; Acharjya, A.; Menezes, P.W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Boosting Visible-Light-Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide-Carbon Nitride System. Angew. Chem. 2017, 129, 1675–1679. [Google Scholar] [CrossRef]
- Davydov, A. Molecular Spectroscopy of Oxide Catalyst Surfaces; John Wiley & Sons Ltd.: Chichester, UK, 2003; pp. 238–252. [Google Scholar]
- Priebe, J.B.; Radnik, J.; Lennox, A.J.J.; Pohl, M.-M.; Karnahl, M.; Hollmann, D.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M.; et al. Solar Hydrogen Production by Plasmonic Au-TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates. ACS Catal. 2015, 5, 2137–2148. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Mohlmann, L.; Dolega, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem. Int. Ed. 2012, 51, 3183–3187. [Google Scholar] [CrossRef] [PubMed]
- Priebe, J.B.; Karnahl, M.; Junge, H.; Beller, M.; Hollmann, D.; Bruckner, A. Water reduction with visible light: Synergy between optical transitions and electron transfer in Au-TiO2 catalysts visualized by in situ EPR spectroscopy. Angew. Chem. Int. Ed. 2013, 52, 11420–11424. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K.; Kuroda, S.-I.; Tajima, S.; Takehira, K.; Tobita, S.; Kubota, H. Photoluminescence study of electron-hole recombination dynamics in the vacuum-deposited SiO2/TiO2 multilayer film with photo-catalytic activity. Chem. Phys. Lett. 2003, 369, 225–231. [Google Scholar] [CrossRef]
- Xing, C.; Wu, Z.; Jiang, D.; Chen, M. Hydrothermal synthesis of In2S3/g-C3N4 heterojunctions with enhanced photocatalytic activity. J. Colloid Interface Sci. 2014, 43, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shen, S.; Guo, P.; Wu, P.; Guo, L. Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. J. Mater. Chem. A 2014, 2, 4605–4612. [Google Scholar] [CrossRef]
- Fan, M.; Hu, B.; Yan, X.; Song, C.; Chen, T.; Feng, Y.; Shi, W. Excellent visible-light-driven photocatalytic performance of Cu2O sensitized NaNbO3 heterostructures. New J. Chem. 2015, 39, 6171–6177. [Google Scholar] [CrossRef]
- Nayak, S.; Mohapatra, L.; Parida, K. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 2015, 3, 18622–18635. [Google Scholar] [CrossRef]
- Jin, X.; Fan, X.; Tian, J.; Cheng, R.; Li, M.; Zhang, L. MoS2 quantum dot decorated g-C3N4 composite photocatalyst with enhanced hydrogen evolution performance. RSC Adv. 2016, 6, 52611–52619. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
Sample | Surface Content (at.%) | Total Pt (wt.%) (ICP-OES) | ||||||
---|---|---|---|---|---|---|---|---|
C | N | O | Ag | In | S | Pt | ||
CN | 44.8 | 52.3 | 2.9 | - | - | - | - | - |
AIS | 22.3 | 9.7 | 4.7 | 27.5 | 35.9 | - | - | |
10AIS-CN | 42.8 | 34.5 | 7.0 | 1.2 | 6.1 | 8.3 | - | - |
Pt/CN (3 h) | 45.5 | 50.9 | 3.5 | - | - | - | 0.06 | 0.27 |
Pt/CN (20 h) | 46.6 | 49.4 | 3.9 | - | - | - | 0.05 | 0.43 |
Pt/CN_OA (4 h) 1 | 46.9 | 48.5 | 3.7 | - | - | - | 0.85 | 1.69 |
Pt/CN_OA_TEOA (24 h) 2 | 44.8 | 51.3 | 3.6 | - | - | - | 0.2 | n. d. |
Pt/10AIS-CN (3 h) | 47.9 | 35.9 | 6.6 | 0.6 | 2.4 | 4.1 | 2.5 | 1.86 |
Pt/10AIS-CN (20 h) | 45.3 | 40.6 | 7.2 | 0.5 | 2.6 | 2.4 | 1.4 | 1.87 |
Catalyst | Band Gap (eV) 1 | SBET (m2/g) | Pore Volume (cm3/g) | Mean Pore Size (nm) |
---|---|---|---|---|
CN | 2.65 | 159.1 | 0.206 | 3.9 |
5AIS-CN | 2.59 | 137.4 | 0.194 | 4.5 |
10AIS-CN | 2.54 | 118.4 | 0.150 | 3.9 |
15AIS-CN | 2.48 | 122.7 | 0.175 | 4.5 |
20AIS-CN | 2.39 | 126.7 | 0.177 | 4.6 |
AIS | 1.75 | 90.9 | 0.272 | 8.2 |
Pt/CN (20 h) | - | 137.0 | 0.210 | 3.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasankaran, R.P.; Rockstroh, N.; Hollmann, D.; Kreyenschulte, C.R.; Agostini, G.; Lund, H.; Acharjya, A.; Rabeah, J.; Bentrup, U.; Junge, H.; et al. Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts 2018, 8, 52. https://doi.org/10.3390/catal8020052
Sivasankaran RP, Rockstroh N, Hollmann D, Kreyenschulte CR, Agostini G, Lund H, Acharjya A, Rabeah J, Bentrup U, Junge H, et al. Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts. 2018; 8(2):52. https://doi.org/10.3390/catal8020052
Chicago/Turabian StyleSivasankaran, Ramesh P., Nils Rockstroh, Dirk Hollmann, Carsten R. Kreyenschulte, Giovanni Agostini, Henrik Lund, Amitava Acharjya, Jabor Rabeah, Ursula Bentrup, Henrik Junge, and et al. 2018. "Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production" Catalysts 8, no. 2: 52. https://doi.org/10.3390/catal8020052
APA StyleSivasankaran, R. P., Rockstroh, N., Hollmann, D., Kreyenschulte, C. R., Agostini, G., Lund, H., Acharjya, A., Rabeah, J., Bentrup, U., Junge, H., Thomas, A., & Brückner, A. (2018). Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts, 8(2), 52. https://doi.org/10.3390/catal8020052