Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Litter, M.I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl. Catal. B Environ. 1999, 23, 89–114. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Yadav, H.M.; Kim, J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd. 2016, 688, 123–129. [Google Scholar] [CrossRef]
- Luna, A.L.; Valenzuela, M.A.; Justin, C.C.; Vázquez, P.; Rodriguez, J.L.; Avendaño, J.R.; Alfaro, S.; Tirado, S.; Garduño, A.; Rosa, J.M.D. Photocatalytic degradation of gallic acid over CuO-TiO2 composites under UV/Vis LEDs irradiation. Appl. Catal. A Gen. 2016, 521, 140–141. [Google Scholar] [CrossRef]
- Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. Aureus. P. Aeruginosa and E. Coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M. Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A Gen. 2007, 325, 1–14. [Google Scholar] [CrossRef]
- Kubacka, A.; Colón, G.; García, M.F. Cationic (V, Mo, Nb, W) doping of TiO2-anatase: A real alternative for visible light-driven photocatalysts. Catal. Today 2009, 143, 286–292. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Selli, E. Doping TiO2 with p-block elements: Effects on photocatalytic activity. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 13–28. [Google Scholar] [CrossRef]
- Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. Am. Chem. Soc. 2014, 114, 9853–9889. [Google Scholar] [CrossRef] [PubMed]
- Araque, D.G.; Peña, P.A.; Ortega, D.R.; Rojas, L.L.; Gómez, R. SnO2-TiO2 structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2017, 92, 1531–1539. [Google Scholar] [CrossRef]
- Lafond, V.; Mutin, P.H.; Vioux, A. Non-hydrolytic sol-gel routes based on alkyl halide elimination: Toward better mixed oxide catalysts and new supports application to the preparation of a SiO2-TiO2 epoxidation catalyst. J. Mol. Catal. A Chem. 2002, 182–183, 81–88. [Google Scholar] [CrossRef]
- Pan, J.H.; Sun, D.D.; Lee, W.I. Preparation of periodically organized mesoporous bicomponent TiO2 and SnO2-based thin films by controlling the hydrolytic kinetics of inorganic precursors during EISA process. Mater. Lett. 2011, 65, 2836–2840. [Google Scholar] [CrossRef]
- Kim, J.-S.; Sung, H.-J.; Kim, B.-J. Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu,Nd) phosphor. Appl. Surf. Sci. 2015, 334, 151–156. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L. Lanthanide-doped nanomaterials for luminescence detection and imaging. TrAC Trends Anal. Chem. 2014, 62, 123–134. [Google Scholar] [CrossRef]
- Mavengere, S.; Yadav, H.M.; Kim, J.-S. Photocatalytic properties of nanocrystalline TiO2 coupled with up-conversion phosphors. J. Ceram. Sci. Tech. 2017, 8, 67–72. [Google Scholar]
- Xu, D.-X.; Lian, Z.-W.; Fu, M.-L.; Yuan, B.; Shi, J.-W.; Cui, H.-J. Advanced near-infrared-driven photocatalyst: Fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+,Tm3+@TiO2 core@shell microcrystals. Appl. Catal. B Environ. 2013, 142, 377–386. [Google Scholar] [CrossRef]
- Hsu, C.H.; Lu, C.H. Microwave-hydrothermally synthesized (Sr1−x−yCexTby)Si2O2- Si2O2-δ N2+μ phosphors: Efficient energy transfer, structural refinement and photoluminescence properties. J. Mater. Chem. 2011, 21, 2932–2939. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, Y.; Jiang, Y.; Zhang, M.; Sun, W.; Zhao, X.-Z. Coupling effects of Au-decorated core-shell β-NaYF4:Er/Yb@SiO2 microprisms in dye-sensitized solar cells: Plasmon resonance versus upconversion. Electrochim. Acta. 2015, 180, 394–400. [Google Scholar] [CrossRef]
- Schietinger, S.; Menezes, L.D.S.; Lauritzen, B.; Benson, O. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ Codoped NaYF4 nanocrystals. Nano Lett. 2009, 9, 2477–2481. [Google Scholar] [CrossRef] [PubMed]
- Bednarkiewicz, A.; Wawrzynczyk, D.; Nyk, M.; Samoć, M. Tuning red-green-white up-conversion color in nano NaYF4:Er/Yb phosphor. J. Rare Earths 2011, 29, 1152–1156. [Google Scholar] [CrossRef]
- Wu, X.; Yin, S.; Dong, Q.; Liu, B.; Wang, Y.; Sekino, T.; Lee, S.W.; Sato, T. UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xiao, L.; Luo, Q.; Li, X.; An, J.; Duan, Y. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300 °C. J. Hazard. Mater. 2011, 192, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Di, W.; Zhai, X.; Yang, R.; Qin, W. NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb,Tm@TiO2 core-shell nanoparticles. ACS Catal. 2013, 3, 405–412. [Google Scholar] [CrossRef]
- Tabaei, H.S.M.; Kazemeini, M.; Fattahi, M. Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst. Sci. Iran. 2012, 19, 1626–1631. [Google Scholar] [CrossRef]
- Ma, L.; Jia, I.; Guo, X.; Xiang, L. Current status and perspective of rare earth catalytic materials and catalysis. Chin. J. Catal. 2014, 35, 108–119. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Li, F.; Huang, Y.; Hu, X.; Huang, H.; Peng, R.; Zhai, X.; Fu, Z.; Lu, Y. Multifunctional single-phase photocatalysts: Extended near infrared photoactivity and reliable magnetic recyclability. Sci. Rep. 2015, 5, 15511. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, W.; Ni, Y.; Lu, C.; Xu, Z. Different upconversion properties of β-NaYF4:Yb3+, Tm3+/Er3+ in Affecting the near-infrared-driven photocatalytic activity of high-reactive TiO2. ACS Appl. Mater. Interfaces. 2014, 6, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.M.; Kolekar, T.V.; Pawar, S.H.; Kim, J.-S. Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light. J. Mater. Sci. Mater. Med. 2016, 27, 57. [Google Scholar] [CrossRef] [PubMed]
- Reszczyńska, J.; Grzyb, T.; Sobczak, J.W.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska, A. Lanthanide co-doped TiO2: The effect of metal type and amount on surface properties and photocatalytic activity. Appl. Surf. Sci. 2014, 307, 333–345. [Google Scholar] [CrossRef]
- Deboer, M.A.; Lammertsma, K. Scarcity of rare earth elements. ChemSusChem 2013, 6, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Di, W.; Chen, C.; Liu, C.; Wang, X.; Qin, W. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites. Dalt. Trans. 2014, 43, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Luoshan, M.; Bai, L.; Bu, C.; Liu, X.; Zhu, Y.; Guo, K.; Jiang, R.; Li, M.; Zhao, X. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4:Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells. J. Power Sources 2016, 307, 468–473. [Google Scholar] [CrossRef]
- Zhang, H.; Millington, K.R.; Wang, X. The photostability of wool doped with photocatalytic titanium dioxide nanoparticles. Polym. Degrad. Stab. 2009, 94, 278–283. [Google Scholar] [CrossRef]
- Luo, L.; Li, Y.; Hou, J.; Yang, Y. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Appl. Surf. Sci. 2014, 319, 332–338. [Google Scholar] [CrossRef]
- Deng, X.; Wang, C.; Shao, M.; Xu, X.; Huang, J. Low-temperature solution synthesis of CuO/Cu2O nanostructures for enhanced photocatalytic activity with added H2O2: Synergistic effect and mechanism insight. RSC Adv. 2017, 7, 4329–4338. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Liu, Y. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Appl. Surf. Sci. 2015, 358, 28–45. [Google Scholar] [CrossRef]
- Sahel, K.; Elsellami, L.; Mirali, I.; Dappozze, F.; Bouhent, M.; Guillard, C. Hydrogen peroxide and photocatalysis. Appl. Catal. B Environ. 2016, 188, 106–112. [Google Scholar] [CrossRef]
- Ratnasamy, P.; Srinivas, D.; Knözinger, H. Active sites and reactive intermediates in titanium silicate molecular sieves. Adv. Catal. 2004, 48, 1–169. [Google Scholar]
- Dubale, A.A.; Pan, C.; Tamirat, A.G.; Chen, H.-M.; Su, W.-N.; Chen, C.-H.; Rick, J.; Ayele, D.W.; Aragaw, B.A.; Lee, J.-F.; et al. Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 2015, 3, 12482–12499. [Google Scholar] [CrossRef]
- Singh, V.; Haritha, P.; Venkatramu, V.; Kim, S.H. Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 126, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Long, J.; Fan, Z.; Du, M.; Xiong, S.; Zhao, D.; Ji, F.; He, Q.; Zeng, Y.; Xu, X. Synthesis and photocatalytic activity of hexagonal phase NaYF4:Ho3+@TiO2 core–shell microcrystals. CrystEngComm 2016, 18, 6471–6482. [Google Scholar] [CrossRef]
- Gombac, V.; Sordelli, L.; Montini, T.; Delgado, J.J.; Adamski, A.; Adami, G.; Cargnello, M.; Bernal, S.; Fornasiero, P. CuOx−TiO2 Photocatalysts for H2 production from ethanol and glycerol solutions. J. Phys. Chem. A 2010, 114, 3916–3925. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, G.; Dastageer, M.A.; Zhu, L.; Wang, J.; Zhang, B.; Chang, X.; Gondal, M.A. Highly-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 reduction into value-added methanol. RSC Adv. 2014, 4, 56961–56969. [Google Scholar] [CrossRef]
- Paschoalino, F.C.S.; Paschoalino, M.P.; Jordão, E.; Jardim, W.F. Evaluation of TiO2, ZnO, CuO and Ga2O3 on the photocatalytic degradation of phenol using an annular-flow photocatalytic reactor. Open J. Phys. Chem. 2012, 2, 135–140. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, Q.; Zhao, Q.; Ma, L.; Ding, M.; Xu, X. Effects of architectures and H2O2 additions on the photocatalytic performance of hierarchical Cu2O nanostructures. Nanoscale Res. Lett. 2015, 10, 2–10. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavengere, S.; Jung, S.-C.; Kim, J.-S. Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite. Catalysts 2018, 8, 521. https://doi.org/10.3390/catal8110521
Mavengere S, Jung S-C, Kim J-S. Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite. Catalysts. 2018; 8(11):521. https://doi.org/10.3390/catal8110521
Chicago/Turabian StyleMavengere, Shielah, Sang-Chul Jung, and Jung-Sik Kim. 2018. "Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite" Catalysts 8, no. 11: 521. https://doi.org/10.3390/catal8110521
APA StyleMavengere, S., Jung, S.-C., & Kim, J.-S. (2018). Visible Light Photocatalytic Activity of NaYF4:(Yb,Er)-CuO/TiO2 Composite. Catalysts, 8(11), 521. https://doi.org/10.3390/catal8110521