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Abstract: TiO2 photocatalysts are limited to ultraviolet light photo-activation, however, by coupling with
NaYF4:(Yb,Er) they can utilize visible light activation, but with low efficiencies. In order to enhance visible
light photo-activity, CuO nanoparticles were coupled with NaYF4:(Yb,Er) by mechanical ball-milling and
coated with TiO2-sol. The coupling of CuO nanoparticles with NaYF4:(Yb,Er)/TiO2 caused the formation
of a NaYF4:(Yb,Er)-CuO/TiO2 composite capable of visible absorption with a remarkably reduced band
gap of ~2.5 eV. The NaYF4:(Yb,Er)-CuO/TiO2 composite in H2O2 showed the most efficient methylene
blue (MB) degradation efficiency of more than 99.5% after exposure to visible light.
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1. Introduction

TiO2, as a semiconductor, is well known for its chemical stability, non-toxicity and ultraviolet
(UV) photo-activation [1,2]. This UV photo-activation limits TiO2 to partial utilization of the solar
spectrum (3–5%) [3]. Several research studies have been conducted to reduce the TiO2 band gap and
render it photo-active in the visible region [4,5]. These methods include doping with metal ions (Ag,
Co, Fe, Cr, etc.) [6–8], non-metals (N, C, F, etc.) [9,10] and coupling TiO2 with metal oxides (SiO2, SnO2,
WO3, etc.) [11–13] or phosphor materials (CaAl2O4:(Eu,Nd), NaYF4:(Yb,Er)) [14–16].

Interestingly, the coupling of TiO2 with upconversion phosphors can remarkably extend utilization
of the whole solar spectrum [17]. The major advantage of upconversion phosphor is the ability to
convert even low near-infrared (NIR) photons to higher energy photons in the UV and visible light
range [18,19]. In this way, the NaYF4:(Yb, Er) upconversion phosphor characteristic emerges from
Yb3+ ions which absorb the 980 nm wavelength spectrum and transfer energy to Er3+ ions which
then emit visible light photons. Er3+ ions emit visible light at 450, 525, and 650 nm wavelengths
due to transitions from its ground state 4I15/2 to 4F7/2, 4H11/2, 4F9/2 and 4G9/2, respectively [20–22].
For this reason, Yb3+ ions are termed sensitizers while Er3+ ions are activators. The outstanding
photo-stability of upconversion phosphors has propelled their extensive research for dye sensitized
solar cells, bio-imaging and UV-vis-NIR photocatalysis applications [19,23].

In a NaYF4:(Yb,Er)/TiO2 composite, NaYF4:(Yb,Er) phosphor can offer an efficient catalyst
support and provide the interfacial energy band bending so that the TiO2 absorption edge can be
extended to the visible region [14,22]. However, the visible light photocatalysis of a NaYF4:(Yb,Er)/TiO2

composite shows low efficiency. For example, complete photo-degradation of dye pollutants mixed
with phosphor-TiO2 photocatalyst occurs after 10 h of exposure to a visible light source [17,24].

Photocatalysis efficiency depends on various factors which include intensity of illuminating light,
temperature, concentration of dye pollutants and the amount of doping elements in the photocatalyst

Catalysts 2018, 8, 521; doi:10.3390/catal8110521 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-7369-7879
http://www.mdpi.com/2073-4344/8/11/521?type=check_update&version=1
http://dx.doi.org/10.3390/catal8110521
http://www.mdpi.com/journal/catalysts


Catalysts 2018, 8, 521 2 of 15

or the amount of photocatalyst in the reactor [25–27]. For instance, high photocatalyst loading in
the reactor can significantly improve photocatalysis efficiency [28,29]. This is mainly because more
photocatalyst particles increase the number of photo-active sites which enhance the reaction rate [30].
However, upconversion phosphors are synthesized with rare and scarce earth elements which are
less cost competitive [31]. Hence, there is a need to synthesize a composite photocatalyst with high
photocatalytic ability even at low catalyst loading in the photo-reactor.

One promising method to improve photocatalytic efficiencies involves the synthesis of
multi-composites [10,32]. Recently, several upconversion phosphors of multi-composites were synthesized
to produce core–shell structures with TiO2 and a third compound. For example, NaYF4:(Yb,Er)/TiO2

coupled with SiO2 has been reported. SiO2 in the NaYF4:(Yb,Er)/TiO2 composite can improve photovoltaic
efficiency as well as facilitating energy transfer from phosphor to the TiO2 conduction band [33,34].
However, in this multi-composite, the photocatalytic efficiency is dependent on the thickness of the
outer shell. Thus, a thick silica coating can hinder light absorption in the inner phosphor particles.
The most important property of a photocatalyst is the ability to maintain chemical stability after a
photo-degradation cycle. This photo-stability property is beneficial for recyclability [35,36]. Unfortunately,
the core–shell structures are reported to be unstable during separation and centrifuge washing steps.
Therefore, recyclability is limited for the core–shell photocatalyst [19].

Surprisingly, the coupling of NaYF4:(Yb,Er)/TiO2 with visible light-active CuO (1.2–2.0 eV)
has not been extensively studied yet. Moreover, CuO is abundantly available, chemically stable
and photo-active in H2O2 aqueous media [37]. It is important to note that H2O2 has been used to
remove organic impurities with photocatalytic materials under light exposure [38–40]. The substantial
advantage of coupling NaYF4:(Yb,Er) with TiO2 and CuO is to form composites with improved band
structure for efficiently utilizing the broad solar spectrum in photocatalysis [22,33].

In this study, CuO nanoparticles were combined with the NaYF4:(Yb,Er)/TiO2 composite to
enhance visible light absorption and photocatalytic activity. The effect of H2O2 on photocatalytic
performance and the recyclability of NaYF4:(Yb,Er)-CuO/TiO2 photocatalyst were also examined.

2. Results and Discussion

Figure 1 shows x-ray diffraction (XRD) patterns for NaYF4:(Yb,Er), CuO, NaYF4:(Yb,Er)-CuO and
NaYF4:(Yb,Er)-CuO/TiO2 composite. The pure phosphor was referenced to the characteristic peaks of
JCPDS No. 77-2042 while the CuO nanoparticles were referenced to JCPDS No. 045-0937. With increasing
annealing temperature from 350 ◦C to 550 ◦C (from Figure 1c–f), the NaYF4:(Yb,Er) phosphor main peaks
occurred at (111), (200), (220) and (311) were diminishing. While CuO characteristic peaks corresponding
to (002), (111), (202) and (020) emerged along the NaYF4:(Yb,Er)-CuO composites. Besides NaYF4:(Yb,Er)
and CuO characteristic peaks, new peaks occurred at 17◦, 29◦, 30◦, 39◦, 43◦, 53◦ and 77◦ and are suggested
to be (hexagonal) β-NaYF4. These diffraction peaks corresponding to β-NaYF4 are indexed in JCPDS
No. 28-1192 as (100), (110), (101), (111), (201), (300) and (302) respectively. The thermal treatment may have
induced the phase transition from α to β-NaYF4. Furthermore, due to the co-existence of three phases
(cubic NaYF4, hexagonal NaYF4 and CuO), it is expected that intermetallic compounds are formed during
thermal treatment. Although no other Cu phases were identified at different annealing conditions, a 450 ◦C
annealing temperature is known for pure CuO phases with band gaps between 1.2 eV and 2 eV [41].
Therefore, NaYF4:(Yb,Er)-CuO composites annealed at 450 ◦C were utilized for TiO2 coating. TiO2 peaks
could not be observed in the NaYF4:(Yb,Er)-CuO/TiO2 composite because its amount was beyond the
XRD detection limit.
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Figure 1. XRD spectra of (a) NaYF4:(Yb,Er), (b) CuO, (c) NaYF4:(Yb,Er)-CuO at 350 °C, (d) 
NaYF4:(Yb,Er)-CuO at 450 °C, (e) NaYF4:(Yb,Er)-CuO at 550 °C, and (f) NaYF4:(Yb,Er)-CuO/TiO2 
composite at 450 °C. 

Figure 2 shows SEM images of (a) NaYF4:(Yb,Er), (b) CuO, (c) NaYF4:(Yb,Er)-CuO, (d) 
NaYF4:(Yb,Er)-CuO/TiO2. The prepared NaYF4:(Yb,Er) phosphor has agglomerated particles as 
shown in Figure 2a around 2 µm in diameter. However, the CuO particles in Figure 2b are dense 
spherical particles. In Figure 2c, NaYF4:(Yb,Er)-CuO composite powders consist of particles of sizes 
below 1 µm. It is evident that mechanical ball-milling might reduce the size of NaYF4:(Yb,Er) 
phosphor agglomerates. The NaYF4:(Yb,Er)-CuO/TiO2 composite in Figure 2d consists of 
agglomerates with dense particles of nanometer range, due to TiO2 coating. Figure 2e shows the 
particle size distribution for the NaYF4:(Yb,Er)-CuO/TiO2 composite. The particle sizes are ranging 
between 0.8 and 4 µm. The EDS spectra for the NaYF4:(Yb,Er)-CuO/TiO2 composite confirmed the 
presence of all elements, as shown in Figure 2f. 
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Figure 1. XRD spectra of (a) NaYF4:(Yb,Er), (b) CuO, (c) NaYF4:(Yb,Er)-CuO at 350 ◦C, (d) NaYF4:(Yb,Er)-
CuO at 450 ◦C, (e) NaYF4:(Yb,Er)-CuO at 550 ◦C, and (f) NaYF4:(Yb,Er)-CuO/TiO2 composite at 450 ◦C.

Figure 2 shows SEM images of (a) NaYF4:(Yb,Er), (b) CuO, (c) NaYF4:(Yb,Er)-CuO, (d) NaYF4:(Yb,Er)-
CuO/TiO2. The prepared NaYF4:(Yb,Er) phosphor has agglomerated particles as shown in Figure 2a
around 2 µm in diameter. However, the CuO particles in Figure 2b are dense spherical particles.
In Figure 2c, NaYF4:(Yb,Er)-CuO composite powders consist of particles of sizes below 1 µm. It is
evident that mechanical ball-milling might reduce the size of NaYF4:(Yb,Er) phosphor agglomerates.
The NaYF4:(Yb,Er)-CuO/TiO2 composite in Figure 2d consists of agglomerates with dense particles
of nanometer range, due to TiO2 coating. Figure 2e shows the particle size distribution for the
NaYF4:(Yb,Er)-CuO/TiO2 composite. The particle sizes are ranging between 0.8 and 4 µm. The EDS
spectra for the NaYF4:(Yb,Er)-CuO/TiO2 composite confirmed the presence of all elements, as shown
in Figure 2f.
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respectively, while the pore size and adsorbed volume are 8.93 nm and 0.0355 cm3/g for 
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specific surface area of pure NaYF4:(Yb,Er) in other previous research is 11.5 m2/g [22]. The differences 
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change in crystallinity with CuO nanoparticles coupling. 
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Figure 2. SEM images of (a) NaYF4:(Yb,Er), ×25k, (b) CuO, ×9k, (c) NaYF4:(Yb,Er)-CuO, ×25k,
(d) NaYF4:(Yb,Er)-CuO/TiO2, x25k, (e) particle size distribution of NaYF4:(Yb,Er)-CuO/TiO2

composite and (f) EDS spectra for the NaYF4:(Yb,Er)-CuO/TiO2 composite.

Figure 3 shows N2 adsorption-desorption isotherms for the NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-
CuO/TiO2 photocatalyst composites. The specific surface areas in the table insert in Figure 3 are
15.9 m2/g and 12.4 m2/g for NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2, respectively, while
the pore size and adsorbed volume are 8.93 nm and 0.0355 cm3/g for NaYF4:(Yb,Er)/TiO2 and
13.3 nm and 0.0413 cm3/g for NaYF4:(Yb,Er)-CuO/TiO2, respectively. The specific surface area of pure
NaYF4:(Yb,Er) in other previous research is 11.5 m2/g [22]. The differences in the specific surface
area, pore volume and diameter are dependent on the synthesis variables and changes in crystalline
composition of the photocatalysts. Therefore, the low surface area and high volume adsorbed/pore
diameter observed in the NaYF4:(Yb,Er)-CuO/TiO2 composite confirms the change in crystallinity
with CuO nanoparticles coupling.
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Figure 3. N2 adsorption-desorption isotherms of NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2.
NaYF represents NaYF4:(Yb,Er).

Figure 4a shows the UV-vis absorption spectra for NaYF4:(Yb,Er), CuO and NaYF4:(Yb,Er)-
CuO/TiO2 samples vs. wavelength. The NaYF4:(Yb,Er)-CuO/TiO2 composite exhibited similar
absorption characteristics to CuO, but with an extended UV absorption edge at 380 nm. This absorption
edge is related to both TiO2 nanoparticles and NaYF4:(Yb,Er). The enlarged UV-vis absorption spectra
in Figure 4b clearly shows absorption peaks at 380 nm, 522 nm and 655 nm which are characteristic
absorption peaks for NaYF4:(Yb,Er) upconversion phosphors. These Er3+ absorption peaks were
originated from the ground states 4I15/2 to 4G9/2, 4F7/2 and 4S3/2, respectively [42]. However,
in the TiO2 coated NaYF4:(Yb,Er) phosphor, the 380 nm peak is not observed because it corresponds
to the TiO2 absorption range. The estimated band energies for CuO, NaYF4:(Yb,Er)/TiO2 and
NaYF4:(Yb,Er)-CuO/TiO2 are 1.5 eV, 3.18 eV and 2.5 eV, respectively, as shown in Figure 4c.
The remarkable band gap reduction in NaYF4:(Yb,Er)-CuO/TiO2 typically signifies the composites can
be photo-activated with both UV and visible light for photocatalysis reactions.
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processes labelled (A), (B), (C) and (D). Firstly, if process (A) is considered as excitation of 
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photons in the visible and NIR are emitted. Thus, as seen in Figure 5a, emission peaks were observed 
at 450 nm, 545 nm, 660 nm and 825 nm. Secondly, if process (B) is considered as the energy transfer 
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composite; (b) enlargement spectra at 350–700 nm wavelength axis in (a) and (c) Kubelka-Munk plots
with the band gap energies.

Figure 5a shows the photoluminescence spectra of NaYF4:(Yb,Er), NaYF4:(Yb,Er)-CuO and
NaYF4:(Yb,Er)-CuO/TiO2. The intensity of the photoluminescence (PL) peaks denotes the extent
of energy transfer efficiency [18]. Pure NaYF4:(Yb,Er) phosphor has visible light emission peaks at
450 nm, 545 nm, 660 nm and a near infrared peak at 825 nm. However, the emission peaks diminish
with coupling NaYF4:(Yb,Er) with CuO nanoparticles, TiO2 coating on NaYF4:(Yb,Er) phosphor and in
NaYF4:(Yb,Er)-CuO composite. Although energy transfer efficiency is evaluated by the decrease in
peak intensities, in TiO2 coated samples, the peak reduction is generally referenced to light emission
hindrance by TiO2 nanoparticles [14]. However, the overall peak suppression can be explained by
considering the band structure of the NaYF4:(Yb,Er)-CuO/TiO2 composite. Figure 5c shows the
schematic band structure of the NaYF4:(Yb,Er)-CuO/TiO2 composite and the energy transfer processes
labelled (A), (B), (C) and (D). Firstly, if process (A) is considered as excitation of NaYF4:(Yb,Er) phosphor
with 980 nm illumination, because of its luminescent characteristics, energy photons in the visible
and NIR are emitted. Thus, as seen in Figure 5a, emission peaks were observed at 450 nm, 545 nm,
660 nm and 825 nm. Secondly, if process (B) is considered as the energy transfer route for light photons
emitted from NaYF4:(Yb,Er), the visible light peaks are absorbed by CuO. However, the emission peaks
are suppressed at (C) in the NaYF4:(Yb,Er)-CuO composite. Finally, when considering light photons
emitted by NaYF4:(Yb,Er) phosphor at (B) are transferred to TiO2 at (C) via CuO, energy losses are
inevitable at (D). The reasons for peak suppression being that energy is lost through multi-phonon
vibrations and the blockage of phosphor emission centers by TiO2 and CuO nanoparticles [17].



Catalysts 2018, 8, 521 8 of 15
Catalysts 2018, 8, x FOR PEER REVIEW  8 of 15 

 

 

 
Figure 5. Cont.



Catalysts 2018, 8, 521 9 of 15

Catalysts 2018, 8, x FOR PEER REVIEW  9 of 15 

 

 
Figure 5. Photoluminescence spectra of (a) NaYF4:(Yb,Er), NaYF4:(Yb,Er)-CuO and NaYF4:(Yb,Er)-
CuO/TiO2; (b) enlargement spectra at 10 to 50 intensity axes and (c) schematic band structure and 
energy transfer routes in the NaYF4:(Yb,Er)-CuO/TiO2 composites. 

Figure 6a shows the degradation efficiency of the methylene blue (MB) solution with H2O2 only 
(no photocatalyst), without and with H2O2 for NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2 
under visible light for 1 h. The NaYF4:(Yb,Er)-CuO/TiO2 composites exhibit the fastest degradation 
efficiency, whereby 60% of the MB solution is degraded within 1 h. The photocatalytic reaction of 
NaYF4:(Yb,Er)/TiO2 without H2O2 oxidant molecules is very slow, but with hydrogen peroxide the 
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Figure 6a shows the degradation efficiency of the methylene blue (MB) solution with H2O2 only
(no photocatalyst), without and with H2O2 for NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2

under visible light for 1 h. The NaYF4:(Yb,Er)-CuO/TiO2 composites exhibit the fastest degradation
efficiency, whereby 60% of the MB solution is degraded within 1 h. The photocatalytic reaction of
NaYF4:(Yb,Er)/TiO2 without H2O2 oxidant molecules is very slow, but with hydrogen peroxide
the reaction is enhanced. This is attributed to the unique role of hydrogen peroxide decomposing
in the presence of a photocatalyst and light to give hydroxyl and superoxide ions which
attack and degrade MB-dye molecules [39]. The photocatalytic degradation of MB solution with
NaYF4:(Yb,Er)-CuO/TiO2 follows first order reaction kinetics as shown in Figure 6b. The rate constant
for NaYF4:(Yb,Er)-CuO/TiO2 is 0.008 min−1. Whilst for NaYF4:(Yb,Er)/TiO2 without and with H2O2

is 0.0015 min−1 and 0.0043 min−1, respectively. Accordingly from the rate constants, the degradation
with NaYF4:(Yb,Er)-CuO/TiO2 is five times and almost two times faster than in NaYF4:(Yb,Er)/TiO2

without and with H2O2, respectively.
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MB-dye molecules [39]. The photocatalytic degradation of MB solution with NaYF4:(Yb,Er)-CuO/TiO2 
follows first order reaction kinetics as shown in Figure 6b. The rate constant for NaYF4:(Yb,Er)-
CuO/TiO2 is 0.008 min−1. Whilst for NaYF4:(Yb,Er)/TiO2 without and with H2O2 is 0.0015 min−1 and 
0.0043 min−1, respectively. Accordingly from the rate constants, the degradation with NaYF4:(Yb,Er)-
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Figure 7a shows the photo-degradation efficiency of MB solution with and without H2O2 for
three samples: NaYF4:(Yb,Er)/TiO2, NaYF4:(Yb,Er)-CuO and NaYF4:(Yb,Er)-CuO/TiO2 under visible
light. Clearly, the NaYF4:(Yb,Er)-CuO/TiO2 composite in H2O2 has the most efficient photo-activity
by decomposing the MB solution more than 99.5% after exposure to visible light. This photocatalytic
activity has higher efficiency as compared to only TiO2-coated phosphor in our previous work [16]
and other research [33,43]. The coupling of CuO nanoparticles with NaYF4:(Yb, Er)/TiO2 caused the
formation of visible light-active nanocomposites. Thus, the NaYF4:(Yb, Er)-CuO/TiO2 nanocomposites
and H2O2 oxidant molecules enhanced photo-activation and separation of electron-hole pairs for
improved photocatalytic activity. Figure 7b shows the recyclability of the NaYF4:(Yb,Er)-CuO/TiO2

composite under visible light for three cycles. After the first run, the photocatalytic degradation
efficiency of the MB solution decreased from almost 100% to 80% and almost 60% in the second and
third cycle, respectively. The noticeable difference in photocatalyst efficiency is due to several factors
relating to surface-adsorption characteristics, such as Cu leaching [44] and the possible loss of TiO2

nanoparticles [43]. Specifically, the centrifugal process and several washing steps during material
preparation may result in a loss of TiO2 nanoparticles.
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The overall photocatalytic activity can be influenced by the chemical composition, specific
surface area, optical property of the photocatalyst and the presence of H2O2 oxidant molecules [39].
Firstly, the change in compositional crystallinity by coupling NaYF4:(Yb,Er)/TiO2 with CuO evidently
improved the photocatalytic activity. Moreover, the co-existence of CuO, α-NaYF4 and β-NaYF4

phases as confirmed by XRD further increases the TiO2 absorption edge towards visible light. Secondly,
it is well known that the high specific surface area is related to the enhancement of photocatalytic
activity. Nevertheless, the case is unique in the NaYF4:(Yb,Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2

photocatalyst composites. Thus, NaYF4:(Yb,Er)/TiO2 showed higher specific area (15.9 m2/g),
but exhibited lower photocatalytic activity than the NaYF4:(Yb,Er)-CuO/TiO2 (12.4 m2/g) [45].
The explanation for this discrepancy is regardless of the specific surface area; the dominating property
is the existence of a visible light-active CuO compound. Therefore, with CuO nanoparticle coupling (as
the third compound in the NaYF4:(Yb,Er)-CuO/TiO2 composite) visible light absorption by composites
is improved and these composites have more efficient charge transfer properties than only TiO2 coated
phosphor [33]. Thirdly, the photoactivity is low without H2O2 oxidant molecules in the photo-reaction
mixture of TiO2 coated composites (NaYF4:(Yb, Er)/TiO2 and NaYF4:(Yb,Er)-CuO/TiO2) and
NaYF4:(Yb,Er)-CuO as exhibited in Figure 7a. Although photo-degradation up to 40% is observed
in the TiO2-coated composites, the NaYF4:(Yb,Er)-CuO degraded only 20% of MB solution. This is
due to the higher oxidizing ability of TiO2 as compared to CuO [46]. In contrast, the photocatalyst
mixture with H2O2 oxidant molecules showed an improvement in photocatalytic activity of the
NaYF4:(Yb,Er)/TiO2, NaYF4:(Yb,Er)-CuO and NaYF4:(Yb,Er)-CuO/TiO2. Thus, the H2O2 oxidant
was photo-degraded to produce hydroxyl and super oxide ions which might degrade the MB-dye
solution. The superior oxidizing power of H2O2 molecules has been utilized in several research
studies to enhance the photocatalytic activity of pure CuO and its composite materials [47]. Finally,
the major advantage of coupling CuO and TiO2 nanoparticles with phosphor is the inevitable
alteration of the NaYF4:(Yb,Er)-CuO/TiO2 composites band structure, as observed in both visible light
absorption and band gap estimations in Figure 4. The NaYF4:(Yb,Er) can also facilitate the electron-hole
charge separation process which enhances photocatalytic efficiencies [17]. Additionally, the phosphor
crystalline surface not only supports the nanoparticles, but it also facilitates energy transfer within the
composite system as described in Figure 5c. Accordingly, the composites can also be utilized efficiently
in solar harvesting systems.
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3. Materials and Methods

NaYF4:(Yb, Er) phosphor was synthesized by solution combustion as described in our previous
work [16]. A yttrium rare earth nitrate solution consisting of Y2O3 (99.99%, Daejung Chemicals &
Metals Co., Ltd., Siheung-si, Gyeonggi-do, Korea), Yb2O3 (99.9%, Wako Pure Chemical Industries
Ltd., Osaka, Japan) and Er2O3 (99.9%, Sigma Aldrich, Shanghai, China) with 0.77:0.2:0.03 molar ratios,
respectively, was prepared under magnetic stirring in nitric acid. The fuel mixture of Na2SiF6 (98.0%,
Duksan Pure Chemical Co., Ltd., Ansansi, Kyunggido, Korea), CO(NH2)2 (99.0%, Samchun Pure
Chemical Co., Ltd., Pyeongtaek, Gyeonggi-do, Korea) and NH4HF2 (95.0%, Duksan Pure Chemical
Co., Ltd., Ansansi, Kyunggido, Korea) was added to the rare earth yttrium nitrate solution and placed
in a muffle furnace (SK1700-B30, Thermotechno Co., Siheung-si, Gyeonggi-do, Korea) for combustion
at 650 ◦C for 5 min. Simultaneously, 4.5 g of Cu(NO3)2·3H2O (99.5%, Junsei Chemical Co., Ltd., Tokyo,
Japan) was dissolved in 100 mL of distilled water, following by a 1 mL acetic acid (99.0%, Duksan
Pure Chemical Co., Ltd., Ansansi, Kyunggido, Korea) addition and magnetic stirring for 1 h at 100 ◦C.
Then, 8 M NaOH (Duksan Pure Chemical Co., Ltd., Ansansi, Kyunggido, Korea) was added to obtain
a black CuO precipitate followed by filtering, washing with distilled water and annealing at 500 ◦C
for 4 h. Then, NaYF4:(Yb, Er)-CuO composites at 80:20 wt.% ratio were mixed with ball milling and
annealed at 450 ◦C. Finally, NaYF4:(Yb, Er)-CuO composites were coated with 0.4 M TiO2-sol prepared
from titanium (IV) n-butoxide (99.0%, Acros Organics, Morris, NJ, USA), 50 mL of ethyl alcohol (99.9%,
Duksan Pure Chemical Co., Ltd., Ansansi, Kyunggido, Korea) and 10 mL of distilled water at 50 ◦C.
The TiO2-coated composites were dried at 100 ◦C in an electric oven for 12 h and calcined at 450 ◦C
for 2 h.

The synthesized samples of NaYF4:(Yb,Er)-CuO/TiO2 were characterized for crystallinity by
a X-ray diffraction (XRD, D8 Discover, Bruker AXS GmbH, Karlsruhe, Germany) with Cu Kα

radiation. The morphology of the powder samples was analyzed by scanning electron microscope
(SEM, Hitachi S-4300, Hitachi Ltd., Tokyo, Japan). The chemical composition of the composite
sample was examined by energy dispersive spectroscopy (EDS, JEOL, JP/JSM-6330F, Kyoto, Japan).
The particle size analysis of the NaYF4:(Yb,Er)-CuO/TiO2 composite was obtained by a particle
size analyzer (Microtrac, S-3500, Largo, FL, USA). The specific surface area of the photocatalyst was
determined by the Brunauer-Emmett-Teller (BET) method on an N2 based chemisorption-physisorption
micropore analyzer (3flex Micromeritics, Norcross, GA, USA). The photoluminescence (PL) spectra
were obtained by a fluorescence spectrophotometer (F-4200, Hitachi, Tokyo, Japan) with an excitation
slit of 5 nm and 10 nm emission slit. UV-vis diffuse reflectance spectra were observed using an UV-vis
spectrophotometer (UV-1601, Shimadzu, Kyoto, Japan).

The photocatalytic activity was examined by monitoring the UV-vis absorbance of 2 ppm
methylene blue (MB, 95.0%, Duksan Pure Chemical Co., Ltd., Ansansi, Kyunggido, Korea) solution
under 200 W (clear, Ilkwang Co., Ltd., Dalseogu, Daegu, Korea) visible light irradiation with a
410 nm filter on top of beaker (UV L41 (W) 82 mm, Kenko Zeta, Tokina Co., Ltd., Tokyo, Japan).
Prior to irradiation, photocatalyst powders weighing 100 mg were dispersed in a 100 mL beaker
of MB solution. Then, the photo-reaction mixture was magnetically stirred for 30 min in darkness
to achieve adsorption-desorption equilibria. For comparisons, photo-degradation efficiency was
examined with 0.2 mL and without H2O2 (28.0%, Duksan Pure Chemical Co., Ltd., Ansansi, Kyunggido,
Korea) oxidant molecules. The degradation rate of MB solution mixed with photocatalyst composites
was studied by sampling a small amount of solution photo-degraded at 15 min intervals for 1 h.
Then, the photocatalyst-mixed solution was further exposed to visible light for 2 h to achieve a 3 h
degradation cycle. After the first 3 h cycle, the photocatalyst-mixed solution was centrifugated and
washed with ethanol in water to remove adsorbed dye. Then, the photocatalyst powders were dried
in an electric oven for 100 ◦C for 2 h. The recyclability test was carried out for 2 more cycles with
the collected NaYF4:(Yb,Er)-CuO/TiO2 powders using the described photoactivity measurement.
The photo-reaction beaker was placed in an ice-water bath to avoid temperature rise during the
experiment. Photocatalyst concentration was maintained at 1 mg/mL of MB solution with 0.2 mL
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H2O2 oxidant. The photo-degraded MB solution was centrifugated and examined for absorption by
an UV-vis-NIR spectrophotometer (UV-3150, Shimadzu, Kyoto, Japan).

4. Conclusions

A visible light photo-active NaYF4:(Yb,Er)-CuO/TiO2 composite has been synthesized. The increase
in annealing temperature enhanced the crystallinity of the NaYF4:(Yb,Er)-CuO/TiO2 composite.
The combination of NaYF4:(Yb,Er), CuO and TiO2 greatly enhances UV-vis optical properties and
photocatalytic degradation efficiency for MB solution under visible light irradiation. The NaYF4:(Yb,Er)-
CuO/TiO2 photocatalyst exhibited some recyclability of up to 60% in the third cycle, which could be
beneficial for possible application in photocatalyst systems.
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