Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface
Abstract
1. Introduction
2. Results
2.1. Photocatalytic H2 Evolution Performance
2.2. Photocatalytic Properties of Fresh Catalysts
2.3. Tracking Pt Properties in Photocatalytic H2 Evolution
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of CN and OCN
3.3. Photocatalytic Evaluation for H2 Production
3.4. Structural Properties
3.5. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef]
- Di, T.M.; Xu, Q.L.; Ho, W.K.; Tang, H.; Xiang, Q.J.; Yu, J.G. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 2019, 11, 1394–1411. [Google Scholar] [CrossRef]
- Kuang, P.Y.; Sayed, M.; Fan, J.J.; Cheng, B.; Yu, J.G. 3D Graphene-Based H2-Production Photocatalyst and Electrocatalyst. Adv Energy Mater. 2020, 10, 1903802. [Google Scholar] [CrossRef]
- Zhao, W.; She, T.T.; Zhang, J.Y.; Wang, G.X.; Zhang, S.J.; Wei, W.; Yang, G.; Zhang, L.L.; Xia, D.H.; Cheng, Z.P.; et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. Mater. Sci. Technol. 2021, 85, 18. [Google Scholar] [CrossRef]
- Cao, M.; Yang, F.; Zhang, Q.; Zhang, J.; Zhang, L.; Li, L.; Wang, X.; Dai, W.L. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production. Mater. Sci. Technol. 2021, 76, 189. [Google Scholar] [CrossRef]
- Joy, J.; Mathew, J.; George, S.C. Nanomaterials for photoelectrochemical water splitting—Review. Int. J. Hydrogen Energy 2018, 43, 4804. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.S.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, Q.; Sun, X.; Lu, L.; Zhang, Y.; Wang, R.; Jin, S.; Shao, Y.; Qian, J.; Xu, X. SrTiO3-CaCr0.5Nb0.5O3 solid solutions as p-type photocatalysts for Z-scheme water splitting under visible light illumination. J. Mater. Sci. Technol. 2021, 87, 46–53. [Google Scholar] [CrossRef]
- Hemmerling, J.; Quinn, J.; Linic, S. Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems. Adv. Energy Mater. 2020, 10, 1903354. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751. [Google Scholar] [CrossRef]
- Limongi, T.; Tirinato, L.; Pagliari, F.; Giugni, A.; Allione, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Lett. 2017, 9, 1. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Dang, T.T.; Tran, V.T.; Dao, D.Q.; Hoang, T.V.A.; Choi, W.M.; Chung, J.S.; Shin, E.W. The coexistence of highly dispersed Pt2+ and Pt0 co-catalysts on chemically oxidized g–C3N4 via metal-support interaction: The effect of reduction time on Pt species and hydrogen evolution of Pt/g-C3N4 photocatalysts. J. Alloys Comp. 2024, 1007, 176392. [Google Scholar] [CrossRef]
- Hoang, T.V.A.; Nguyen, P.A.; Pham, T.-T.; Reddy, K.S.S.V.P.; Jeong, D.H.; Kang, S.G.; Shin, E.W. Homogeneous distribution of highly dispersed Pt species over O and P co-doped g-C3N4 and its superior photocatalytic H2 evolution activity. J. Alloys Comp. 2024, 997, 174923. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Dao, Q.D.; Dang, T.T.; Hoang, T.V.A.; Chung, J.S.; Shin, E.W. Highly dispersed PtO over g-C3N4 by specific metal-support interactions and optimally distributed Pt species to enhance hydrogen evolution rate of Pt/g-C3N4 photocatalysts. Chem. Eng. J. 2023, 464, 142765. [Google Scholar] [CrossRef]
- Dao, Q.D.; Nguyen, T.K.A.; Dang, T.T.; Kang, S.G.; Nguyen-Phu, H.; Do, L.T.; Van, V.K.H.; Chung, K.; Chung, J.S.; Shin, E.W. Anchoring highly distributed Pt species over oxidized graphitic carbon nitride for photocatalytic hydrogen evolution: The effect of reducing agents. Appl. Surf. Sci. 2023, 609, 155305. [Google Scholar]
- Dao, D.Q.; Nguyen, T.K.A.; Kang, S.G.; Shin, E.W. Engineering Oxidation States of a Platinum Cocatalyst over Chemically Oxidized Graphitic Carbon Nitride Photocatalysts for Photocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2021, 9, 14537–14549. [Google Scholar] [CrossRef]
- Liu, L.; Hu, P.; Cui, W.; Li, X.; Zhang, Z. Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@shell structure. Int. J. Hydrogen Energy 2017, 42, 17435–17445. [Google Scholar] [CrossRef]
- Yu, H.; Xu, J.; Yin, C.; Liu, Z.; Li, Y. Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@Ni4S3. J. Solid State Chem. 2019, 272, 102–112. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Post-activation of in situ B-F codoped g-C3N4 for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 2018, 441, 621–630. [Google Scholar] [CrossRef]
- Xiao, M.; Lyu, M.Q.; Wang, Z.T.; Wang, L.Z. ‘Accelerated’ Deactivation of Carbon Nitride Photocatalyst for Solar Hydrogen Evolution. ChemSusChem 2024, 17, e202400937. [Google Scholar] [CrossRef]
- Hasabeldaim, E.H.H.; Swart, H.C.; Coetsee, E.; Kumar, P.; Kroon, R.E. Degradation and chemical stability of graphitic carbon nitride during ultraviolet light irradiation. Mater. Chem. Phys. 2023, 308, 128252. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Lee, T.-W.; Lo, Y.-C.; Hong, W.-J.; Chen, C. Insights into photochemical stability of graphitic carbon nitride-based photocatalysts in water treatment. Carbon 2021, 175, 223–232. [Google Scholar] [CrossRef]
- Li, M.Q.; Liu, D.R.; Chen, X.; Yin, Z.H.; Shen, H.C.; Aiello, A.; McKenzie, K.R., Jr.; Jiang, N.; Li, X.; Wagner, M.J.; et al. Radical-Driven Decomposition of Graphitic Carbon Nitride Nanosheets: Light Exposure Matters. Environ. Sci. Technol. 2021, 55, 12414–12423. [Google Scholar] [CrossRef]
- Feng, Y.P.; Shen, M.Y.; Xie, Z.J.; Chen, P.; Zuo, L.Z.; Yao, K.; Lv, W.Y.; Liu, G.G. Photochemical transformation of C3N4 under UV irradiation: Implications for environmental fate and photocatalytic activity. J. Hazard Mater. 2020, 394, 122557. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Pham, T.-T.; Nguyen-Phu, H.; Shin, E.W. The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl. Surf. Sci. 2021, 537, 148027. [Google Scholar] [CrossRef]
- Nguyen, T.K.A.; Pham, T.-T.; Gendensuren, B.; Oh, E.-S.; Shin, E.W. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres. J. Mater. Sci. Technol. 2022, 103, 232–243. [Google Scholar] [CrossRef]
- Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Ma, Z.; Dong, L.; Jia, Z.; Zhang, J. Enhancing Photocatalytic Hydrogen Production of g-C3N4 by Selective Deposition of Pt Cocatalyst. Nanomaterials 2021, 11, 3266. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.M.; Kadi, A.A.I.M.W.; Alresheedi, A.S.; Mkhalid, I. Fabrication of Mesoporous PtO–ZnO Nanocomposites with Promoted Photocatalytic Performance for Degradation of Tetracycline. ACS Omega 2021, 6, 6438–6447. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xue, S.; Qin, Z.; Nazari, M.; Yang, G.; Yue, S.; Tong, T.; Ghasemi, H.; Hernandez, F.C.R.; Xue, S. Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Appl. Catal. B Environ. 2021, 282, 119557. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Lawes, D.J.; Ball, G.E.; Zhou, C.; Liu, Z.; Amal, R. Analysis of the Promoted Activity and Molecular Mechanism of Hydrogen Production over Fine Au–Pt Alloyed TiO2 Photocatalysts. ACS Catal. 2015, 5, 3924. [Google Scholar] [CrossRef]
- Bera, R.K.; Park, H.; Ko, S.H.; Ryoo, R. Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction. RSC Adv. 2020, 10, 32290–32295. [Google Scholar] [CrossRef] [PubMed]
- He, X.; He, Q.; Deng, Y.; Peng, M.; Chen, H.; Zhang, Y.; Yao, S.; Zhang, M.; Xiao, D.; Ma, D. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Deng, B.; Hu, X.; Zhou, Y.; Pu, Y.; Yu, S.; Ma, K.; Sun, J.; Wan, H.; Dong, L. Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 238, 111–118. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.; Shi, L.; Cao, L.; Yu, Q.; Jie, Y.; Fei, J.; Ouyang, H.; Ye, J. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2017, 204, 335–345. [Google Scholar] [CrossRef]
- Ding, F.; Xu, W.; Chen, X.; Zhang, J.; Engelhard, M.H.; Zhang, Y.; Johnson, B.R.; Crum, J.V.; Blake, T.A.; Liu, X.; et al. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. J. Electrochem. Soc. 2013, 160, A1894–A1901. [Google Scholar] [CrossRef]
- Peuckert, M.; Bonzel, H. Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy. Surf. Sci. 1984, 145, 239–259. [Google Scholar] [CrossRef]
- Li, Y.; Ho, W.; Lv, K.; Zhu, B.; Lee, S.C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380–389. [Google Scholar] [CrossRef]
- Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide using High Resolution In Situ X-Ray based Spectroscopies. J. Phys. Chem. 2011, 115, 17009–17019. [Google Scholar] [CrossRef]







| Catalysts | H2 Production 1 | k1 2 | k2 2 | De 3 | Pt 4 | Band Gap 5 |
|---|---|---|---|---|---|---|
| 3CN | 9778.1 | 543.6 | 533.4 | 0.02 | 2.84 | 2.96 |
| 5CN | 10,614 | 560.6 | 536.1 | 0.04 | 4.88 | 2.99 |
| 3OCN | 13,145 | 901.8 | 646.1 | 0.28 | 2.98 | 3.10 |
| 5OCN | 14,185 | 935.7 | 758.2 | 0.19 | 4.76 | 3.13 |
| Catalysts | davg a | davg b | Pt0 c | Pt2+ c | Pt4+ c |
|---|---|---|---|---|---|
| 3CN—fresh | 1.17 | 1.60 | 6.2% | 74.5% | 19.3% |
| 3CN—spent | 2.41 | 2.72 | 11.6% | 68.9% | 19.5% |
| 3OCN—fresh | 0.18 | 2.06 | 7.3% | 43.9% | 48.8% |
| 3OCN—spent | 3.98 | 3.38 | 13.0% | 78.1% | 8.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Song, C.; Nguyen, P.A.; Pham, T.-T.; Men, Y.; Chung, J.S.; Shin, E.W. Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface. Catalysts 2026, 16, 29. https://doi.org/10.3390/catal16010029
Song C, Nguyen PA, Pham T-T, Men Y, Chung JS, Shin EW. Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface. Catalysts. 2026; 16(1):29. https://doi.org/10.3390/catal16010029
Chicago/Turabian StyleSong, Chao, Phuong Anh Nguyen, Thanh-Truc Pham, Yong Men, Jin Suk Chung, and Eun Woo Shin. 2026. "Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface" Catalysts 16, no. 1: 29. https://doi.org/10.3390/catal16010029
APA StyleSong, C., Nguyen, P. A., Pham, T.-T., Men, Y., Chung, J. S., & Shin, E. W. (2026). Catalytic Deactivation Behavior over Pt/g-C3N4 in Photocatalytic H2 Evolution via Changes in Catalytic Properties of Pt Cocatalyst and g-C3N4 Surface. Catalysts, 16(1), 29. https://doi.org/10.3390/catal16010029

