Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. ALD Processing
3.2. Post-Deposition Calcination
3.3. Characterization
3.4. Measurements of the Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verma, C.; Berdimurodov, E.; Verma, D.K.; Berdimuradov, K.; Alfantazi, A.C.; Hussain, M. 3D Nanomaterials: The future of industrial, biological, and environmental applications. Inorg. Chem. Commun. 2023, 156, 111163. [Google Scholar] [CrossRef]
- Zhao, H.; Lei, Y. 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage. Adv. Energy Mater. 2020, 10, 2001460. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Zhang, Z.; Li, C.; Pan, R.; Li, Y.; Yang, H.; Li, J. Atomic Layer Assembly Based on Sacrificial Templates for 3D Nanofabrication. Micromachines 2022, 13, 856. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Goebl, J.; Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 10259. [Google Scholar] [CrossRef]
- Omotosho, K.D.; Gurung, V.; Banerjee, P.; Shevchenko, E.V.; Berman, D. Self-Cleaning Highly Porous TiO2 Coating Designed by Swelling-Assisted Sequential Infiltration Synthesis (SIS) of a Block Copolymer Template. Polymers 2024, 16, 308. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Z.; Xu, Y.; Ghazzal, M.N.; Colbeau-Justin, C.; Pan, D.; Wu, W. A Facile Strategy for the Preparation of N-Doped TiO2 with Oxygen Vacancy via the Annealing Treatment with Urea. Nanomaterials 2024, 14, 818. [Google Scholar] [CrossRef]
- Olatidoye, O.; Thomas, D.; Bastakoti, B.P. Facile synthesis of mesoporous TiO2 film templated by block copolymer for photocatalytic applications. New J. Chem. 2021, 45, 15761. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, Y.; Wang, X.; Xia, S.; Zhang, Y.; Han, Y.; Yu, J.; Ding, B. Polymer Template Synthesis of Soft, Light, and Robust Oxide Ceramic Films. iScience 2019, 15, 185. [Google Scholar] [CrossRef]
- Borilo, L.; Kozik, V.; Vorozhtsov, A.; Klimenko, V.; Khalipova, O.; Agafonov, A.; Kusova, T.; Kraev, A.; Dubkova, Y. The Low-Temperature Sol-Gel Synthesis of Metal-Oxide Films on Polymer Substrates and the Determination of Their Optical and Dielectric Properties. Nanomaterials 2022, 12, 4333. [Google Scholar] [CrossRef] [PubMed]
- Soler-Illia, G.J.A.A.; Crepaldi, E.L.; Grosso, D.; Sanchez, C. Mesoporous hybrid and nanocomposite thin films. A sol–gel toolbox to create nanoconfined systems with localized chemical properties. Curr. Opin. Colloid Interface Sci. 2003, 8, 109. [Google Scholar] [CrossRef]
- Vallejos, S.; Di Maggio, F.; Shujah, T.; Blackman, C. Chemical Vapour Deposition of Gas Sensitive Metal Oxides. Chemosensors 2016, 4, 4. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Ahn, J.; Ahn, C.; Jeon, S.; Park, J. Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks. Appl. Sci. 2019, 9, 1990. [Google Scholar] [CrossRef]
- Mežnarić, S.; Jelovica Badovinac, I.; Šarić, I.; Peter, R.; Kolympadi Marković, M.; Ambrožić, G.; Gobin, I. Superior UVA-photocatalytic antibacterial activity of a double-layer ZnO/Al2O3 thin film grown on cellulose by atomic layer deposition (ALD). J. Environ. Chem. Eng. 2022, 10, 108095. [Google Scholar] [CrossRef]
- Kääriäinen, T.O.; Lehti, S.; Kääriäinen, M.-L.; Cameron, D.C. Surface modification of polymers by plasma-assisted atomic layer deposition. Surf. Coat. Tech. 2011, 205, S475. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef]
- Rodríguez, R.E.; Agarwal, S.P.; An, S.; Kazyak, E.; Das, D.; Shang, W.; Skye, R.; Deng, T.; Dasgupta, N.P. Biotemplated Morpho Butterfly Wings for Tunable Structurally Colored Photocatalysts. ACS Appl. Mater. Interfaces 2018, 10, 4614. [Google Scholar] [CrossRef]
- Son, S.; Jung, P.-H.; Park, J.; Chae, D.; Huh, D.; Byun, M.; Ju, S.; Lee, H. Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance. Nanoscale 2018, 10, 21696. [Google Scholar] [CrossRef]
- Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E. Structural and Electrical Properties of TiO2/ZnO Core-Shell Nanoparticles Synthesized by Hydrothermal Method. Mater. Charact. 2015, 101, 153. [Google Scholar] [CrossRef]
- Soltani, S.; Khanian, N.; Rashid, U.; Choong, T.S.Y. Core-Shell ZnO-TiO2 Hollow Spheres Synthesized by in-Situ Hydrothermal Method for Ester Production Application. Renew. Energy 2020, 151, 1076. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Nayem, S.M.A.; Alam, M.S.; Islam, M.I.; Seong, G.; Chowdhury, A.-N. Hydrothermal ZnO Nanomaterials: Tailored Properties and Infinite Possibilities. Nanomaterials 2025, 15, 609. [Google Scholar] [CrossRef] [PubMed]
- Astuti, B.; Zhafirah, A.; Carieta, V.A.; Hamid, N.; Marwoto, P.; Sugianto; Nurbaiti, U.; Ratnasari, F.D.; Putra, N.M.D.; Aryanto, D. X-Ray Diffraction Studies of ZnO:Cu Thin Films Prepared Using Sol-Gel Method. J. Phys. Conf. Ser. 2020, 1567, 022004. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Szabó, L.; Milotskyi, R.; Sharma, G.; Takahashi, K. Cellulose Processing in Ionic Liquids from a Materials Science Perspective: Turning a Versatile Biopolymer into the Cornerstone of Our Sustainable Future. Green Chem. 2023, 25, 5338. [Google Scholar] [CrossRef]
- Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Frankcombe, T.J.; Liu, Y. Interpretation of Oxygen 1s X-ray Photoelectron Spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468. [Google Scholar] [CrossRef]
- Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef]
- Nguyen, T.; Valle, N.; Guillot, J.; Bour, J.; Adjeroud, N.; Fleming, Y.; Guennou, M.; Audinot, J.-N.; El Adib, B.; Joly, R.; et al. Elucidating the growth mechanism of ZnO films by atomic layer deposition with oxygen gas via isotopic tracking. J. Mater. Chem. C 2021, 9, 4307. [Google Scholar] [CrossRef]
- Mohan, H.; Mohandoss, S.; Balasubramaniyan, N.; Loganathan, S. Non-Thermal Plasma-Assisted Synthesis of ZnO for Enhanced Photocatalytic Performance. Plasma 2025, 8, 25. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.; Miranda, F.; Fraga, M.; Furlan, H.; Saravia, D.A.; Sobrinho, A.d.S.; Petraconi, G.; Maciel, H.; Pessoa, R. Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO2 Coating. Micromachines 2021, 12, 588. [Google Scholar] [CrossRef] [PubMed]
- Jardas Babić, D.; Peter, R.; Perčić, M.; Salamon, K.; Vengust, D.; Radošević, T.; Podlogar, M.; Omerzu, A. Photocatalytic properties of thin ZnO films synthesised with plasma-enhanced atomic layer deposition at room temperature. Vacuum 2025, 240, 114504. [Google Scholar] [CrossRef]
- Nie, C.; Dong, J.; Sun, P.; Yan, C.; Wu, H.; Wang, B. An Efficient Strategy for Full Mineralization of an Azo Dye in Wastewater: A Synergistic Combination of Solar Thermo- and Electrochemistry plus Photocatalysis. RSC Adv. 2017, 7, 36246. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Wang, Y.; Chen, S. Photoluminescence and photocatalytic properties of ZnO nanostructures: Correlation of NBE and defect emission with charge-carrier dynamics. J. Phys. Chem. C 2011, 115, 11673. [Google Scholar]
- Wang, Y.; Li, J.; Zhang, L.; Sun, C. Enhanced photocatalytic activity of ZnO nanostructures: Insights from PL spectroscopy. Appl. Surf. Sci. 2015, 359, 374. [Google Scholar]
- Yu, J.; Yu, H.; Ho, W.; Jiang, Z. Defect and band-edge emission in ZnO: Relation to photocatalytic efficiency. Chem. Phys. Lett. 2005, 408, 329. [Google Scholar]
- Senthamizhan, A.; Prabukumar, S.; Valarmathi, S.; Ramasamy, P.; Chinnusamy, C. Highly Stacked ZnO Nanograins with Superior Photocatalytic Activity. Nanoscale 2016, 8, 11575. [Google Scholar]
- Kedruk, Y.Y.; Baigarinova, G.A.; Gritsenko, L.V.; Cicero, G.; Abdullin, K.A. Facile Low Cost Synthesis of Highly Photocatalytically Active Zinc Oxide Powders. Front. Mater. 2022, 9, 869493. [Google Scholar] [CrossRef]
- Senthamizhan, A.; Balusamy, B.; Aytac, Z.; Uyar, T. Grain Boundary Engineering in Electrospun ZnO Nanostructures as Promising Photocatalysts. Cryst. Eng. Comm. 2016, 18, 6341. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X. Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review. Nanomaterials 2025, 15, 682. [Google Scholar] [CrossRef]
- Nagpal, K.; Rauwel, E.; Estephan, E.; Soares, M.R.; Rauwel, P. Significance of Hydroxyl Groups on the Optical Properties of ZnO Nanoparticles Combined with CNT and PEDOT:PSS. Nanomaterials 2022, 12, 3546. [Google Scholar] [CrossRef]
- Cao, N.; Li, H.; Wang, L.; Zhai, L.; Wang, J.; Luo, X.; Hu, D.; Pei, F.; Wang, Y.; Miao, K. Morphology Effect on the Piezocatalytic Performance of Zinc Oxide: Overlooked Role of Surface Hydroxyl Groups. Inorg. Chem. Commun. 2025, 182, 115620. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Pantò, F.; Dahrouch, Z.; Saha, A.; Patanè, S.; Santangelo, S.; Triolo, C. Photocatalytic degradation of methylene blue dye by porous zinc oxide nanofibers prepared via electrospinning: When defects become merits. Appl. Surf. Sci. 2021, 557, 149830. [Google Scholar] [CrossRef]








| Sample | D (nm) | a (Å) | c (Å) | c/a |
|---|---|---|---|---|
| Cel/th-ZnO | 13.4 | 3.25 | 5.22 | 1.61 |
| Cel/th-ZnO/calc | 25.2 | 3.25 | 5.21 | 1.60 |
| Cel/PEALD-ZnO | 16.6 | 3.25 | 5.21 | 1.60 |
| Cel/PEALD-ZnO/calc | 24.6 | 3.25 | 5.21 | 1.60 |
| Sample | kDR (min−1) | t1/2 (min) |
|---|---|---|
| Cel/th-ZnO | 0.0093 ± 0.0004 | 74.5 |
| Cel/PEALD-ZnO | 0.0047 ± 0.0002 | 147.5 |
| Cel/th-ZnO/calc | 0.0644 ± 0.0030 | 10.8 |
| Cel/PEALD-ZnO/calc | 0.0415 ± 0.0018 | 16.7 |
| Commercial ZnO | 0.0494 ± 0.0011 | 14.0 |
| MO (control) | 0.0020 ± 0.0001 | 346.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Radičić, R.; Kolympadi Markovic, M.; Peter, R.; Kavre Piltaver, I.; Salamon, K.; Ambrožić, G. Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template. Catalysts 2026, 16, 17. https://doi.org/10.3390/catal16010017
Radičić R, Kolympadi Markovic M, Peter R, Kavre Piltaver I, Salamon K, Ambrožić G. Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template. Catalysts. 2026; 16(1):17. https://doi.org/10.3390/catal16010017
Chicago/Turabian StyleRadičić, Rafaela, Maria Kolympadi Markovic, Robert Peter, Ivna Kavre Piltaver, Krešimir Salamon, and Gabriela Ambrožić. 2026. "Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template" Catalysts 16, no. 1: 17. https://doi.org/10.3390/catal16010017
APA StyleRadičić, R., Kolympadi Markovic, M., Peter, R., Kavre Piltaver, I., Salamon, K., & Ambrožić, G. (2026). Photocatalytic 3D ZnO Nanostructures Prepared by Atomic Layer Deposition from a Sacrificial Cellulose Template. Catalysts, 16(1), 17. https://doi.org/10.3390/catal16010017

