Advances in Chitosanase Research: From Structure and Function to Green Biocatalytic Production of Chitooligosaccharides
Abstract
1. Introduction
2. Chitosanases
2.1. Catalytic Mechanisms of Chitosanases
2.2. Structure–Function Relationships: Substrate Selectivity and Functional Divergence
3. Chitosanase-Producing Microorganisms and Expression Systems
3.1. Microbial Sources of Chitosanases
3.1.1. Bacterial Chitosanases
3.1.2. Fungal Chitosanases
3.1.3. Actinomycetes Chitosanases
3.2. Heterologous Expression Systems
4. Kinetics and Biochemical Properties of Chitosanases
4.1. Substrate Specificity and Product Profiles
4.2. Kinetic Parameters and Physicochemical Stability
Microorganism | Chitosanase Name | Vmax | Kcat | Km | Optimal | Metal Ions (+) | Metal Ions (−) | Substrate Specificity | End Prodcuts | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|
Temp. (°C) | pH | ||||||||||
Bacillus amyloliquefaciens | BamCsn | - | 2.04 × 102/s | 0.587 mg/mL | 40 | 5.6 | - | - | 90% DDA | DP > 3 | [7] |
Bacillus paramycoides BP-N07 | BpCSN | 2727.03 µM/min/mg | - | 4.063 mg/mL | 50 | 6 | Mn2+ | Fe3+, Ag2+, Hg2+ | Chitosan | DP 2–4 | [30] |
Bacillus cereus TY24 | CHOE | 1401.9 µM/min/mg | - | 3.03 mg/mL | 65 | 5.5 | Mn2, Cu2+, Mg2, K+, Ca2+ | Zn2+, Co2+, Al3+, Hg2+, Pb2+, Fe3+ | colloid chitosan | - | [32] |
Gynuella sunshinyii | GsCsn46A | 385.65 µM/min mg | - | 1.97 mg/mL | 30 | 5.5 | - | - | - | DP 2–7 | [49] |
Streptomyces albolongus ATCC 27414 | Csn21c | 263.1 μM/min/mg | - | 7.4 mg/mL | 35–55 | 8 | Mn2+ | Fe3+ | >90%DDA | DP 1–3 | [50] |
Kitasatospora setae KM-6054 | CscB | 555.56 μM/mg/min | - | 4.389 mg/mL | 30 | 6 | Na+, K+, Ca2+, Mg2+ | Fe3+, Cu2+, Ni+, Co2+, Zn2+ | - | DP 2–4 | [51] |
Aspergillus fumigatus CJ22-326 | Csn75 | 6.03 μM/mL/min | - | 0.46 mg/mL | 55–65 | 5.0–6.0 | Mn2+, Co2+, Fe2+, Ca2+ | Mg2+, Cu2+ | - | DP 2–6 | [55] |
Streptomyces griseus HUT 6037 | Csn5 | 42.55 μM/mL/min | - | 0.91 mg/mL | 55 | 5.5–6.0 | Ca2+, Mn2+ | Mg2+, Fe2+, Cu2+, Co2+, Na+ | DDA ≥ 95% | DP 2–4 | [57] |
Bacillus amyloliquefaciens | BaCsn46A | 7142.9 μM/min/mg | - | 2.8 mg/mL | 50 | 6 | - | - | DDA ≥ 95% | DP 2–3 | [63] |
Lentinula edodes | LeCho1 | 76.81 µM/min/mg | - | 0.04 µM | 50 | 3 | Mn2+ | Fe3+ | 95% DDA | DP 2–5 | [64] |
Beauveria bassiana | BbCSN-1 | 3.9 g/min | - | 0.8 mg/mL | 30 | 5 | Mn2+ | Co2+, Cu2+ | colloidal chitosan | DP 2–3 | [65] |
Aspergillus sp. W-2 | CsnW2 | 1.58 mM/L/min | 0.47/s | 7.10 mg/mL | 55 | 6 | Ca2+, Mn2+, Mg2+ | Fe2+, Zn2+, Ge2+, Ni2+, Cu2+ | 92%DDA | DP 2–6 | [66] |
Penicillium oxalicum M2 | PoCSN75A | 4.36 U/mL | - | 0.27 mg/mL | 60 | 5.5 | Ca2+, Mn2+ | Cu2+, Zn2+, Mg2+, Fe2+, Ba2+ | 95% DDA | DP 2–3 | [68] |
Bacillus atrophaeus BSS | Csn-SH | 140.05 mM/mg/min | - | 0.50 mg/mL | 45 | 5 | Mn2+ | Cu2+, Zn2+, Fe2+, Al2+ | DDA≥95% | DP 2–4 | [71] |
Streptomyces hygroscopicus R1 | ShCsn46 | 959 mM/min/mL | 206/min | 2.1 mg/mL | 55 | 5.5 | Mn2+ | Cu2+, Fe2+, Al3+ | 95% DDA | DP 2–6 | [73] |
Streptomyces sp. N174 | CsnN174 | - | 642.1/min | 26.1 µg/mL | - | 5.5 | - | - | 97% DDA | [74] | |
Streptomyces sp. SirexAA-E | SACTE_5457 | 25 mM/mg/min | 11.2/s | 2.2 mg/mL | 45 | 6 | - | - | >90% DDA | DP 2–7 | [75] |
Streptomyces avermitilis | SaCsn46A | 526.32 U/mg/min | - | 1.32 mg/mL | 45 | 6.2 | Mn2+ | Cu2+, Ba2+, Ca2+, Zn2+ | colloidal chitosan | DP 1–2 | [77] |
Bacillus sp. TS | - | 674.71 μM/min | 5.05 × 105/s | 1.19 mg/mL | 60 | 5 | Mn2+ | Co2+, Hg2+, Cu2+ | >90%DDA | DP 3–6 | [78] |
Streptomyces lydicus S1 | SlCsn46 | 1375.7 mM/min/mL | - | 1.92 mg/mL | 50 | 6 | Mn2+ | Al3+, Cu2+ | 95% DDA | DP 2–6 | [79] |
Bacillus thuringiensis B-387 | - | 43 µM/mL/min | 4.79 × 104/s | 0.22 mg/mL | 55 | 6.5 | Mg2+, Mn2+ | Hg+, Cd2+, Zn2+, Ag+ | 85%DDA | DP 2–5 | [80] |
Bacillus mojavensis SY1 | CsnBm | 2802 mM/min/mg | - | 0.71 mg/mL | 55 | 5.5 | Ca2+, Zn2+, Mg2+, Mn2+ | Fe2+, Cu2+ | 90%DDA | DP 2–6 | [81] |
B. mojavensis EGE-B-5.2i | - | 244.5 µM/min/mg | 7.53 × 102/s | 2.1 mg/mL | 55 | 5.5 | Mn2+, K+ | Hg2+, Cu2+ | - | DP 2–6 | [82] |
5. Protein Engineering and In Silico Design of Chitosanases
5.1. Engineering Strategies for Functional Enhancement of Chitosanases
5.2. Computational Redesign and Molecular Dynamics
6. Bioprocess Optimization and Green Production Approaches
6.1. Fermentation Using Low-Cost Substrates
6.2. Immobilized Systems and Nano-Bbiocatalysts
6.3. Bioprocess of COS Production
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Wang, S.-L. Enzymatic Production of Chitooligosaccharide Using a GH Family 46 Chitosanase from Paenibacillus elgii and Its Antioxidant Activity. Catalysts 2024, 14, 761. [Google Scholar] [CrossRef]
- Li, B.; Cui, J.; Xu, T.; Xu, Y.; Long, M.; Li, J.; Liu, M.; Yang, T.; Du, Y.; Xu, Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr. Polym. 2024, 332, 121914. [Google Scholar] [CrossRef]
- Weikert, T.; Niehues, A.; Cord-Landwehr, S.; Hellmann, M.J.; Moerschbacher, B.M. Reassessment of chitosanase substrate specificities and classification. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Seki, K.; Nishiyama, Y.; Mitsutomi, M. Characterization of a novel exo-chitosanase, an exo-chitobiohydrolase, from Gongronella butleri. J. Biosci. Bioeng. 2019, 127, 425–429. [Google Scholar] [CrossRef]
- Tong, L.; Li, Y.; Qin, Q.; Yu, Y.; Duan, L.; Wang, X.; Jiang, Y.; Liao, G.; Zhang, Y.; Wu, C.; et al. Enhancing activity and stability of a GH8 chitosanase through conserved N-terminal and peripheral residue mutations for bioactive chitooligosaccharide production. Int. J. Biol. Macromol. 2025, 315, 144643. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, X. Improve thermostability of Bacillus sp. TS chitosanase through structure-based alignment. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Bhuvanachandra, B.; Sivaramakrishna, D.; Alim, S.; Preethiba, G.; Rambabu, S.; Swamy, M.J.; Podile, A.R. New Class of Chitosanase from Bacillus amyloliquefaciens for the Generation of Chitooligosaccharides. J. Agric. Food Chem. 2021, 69, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Y.; Zhang, X.; Gao, W.; Cai, Z.; Hong, T.; Man, Z.; Qing, Q. Improvement of the Catalytic Activity of Chitosanase BsCsn46A from Bacillus subtilis by Site-Saturation Mutagenesis of Proline121. J. Agric. Food Chem. 2021, 69, 11835–11846. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yu, X.; Zheng, P.; Chen, P.; Wu, D. Rational Redesign of Chitosanase to Enhance Thermostability and Catalytic Activity to Produce Chitooligosaccharides with a Relatively High Degree of Polymerization. J. Agric. Food Chem. 2023, 71, 15213–15223. [Google Scholar] [CrossRef]
- Sun, H.; Cheng, Y.; Zhao, L.; Cao, R. Improvement of the catalytic performance of chitosanase Csn-PD from Paenibacillus dendritiformis by semi-rational design. Int. J. Biol. Macromol. 2024, 264, 130753. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ding, F.; Wu, J.; Ma, W.; Wang, C.; Man, Z.; Cai, Z.; Guo, J. Modulation of a Loop Region in the Substrate Binding Pocket Affects the Degree of Polymerization of Bacillus subtilis Chitosanase Products. J. Agric. Food Chem. 2024, 72, 4358–4366. [Google Scholar] [CrossRef]
- Duan, S.Y.; Zhang, X.S.; Yuan, Y.Q.; Jing, S.Y.; Qiao, M.H.; Ji, R. Improving the Thermostability and Catalytic Performance of the Bacillus subtilis Chitosanase BsCsn46A via Computational Design. Appl. Biochem. Microbiol. 2024, 60, 889–896. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Li, K.; Xing, R.; Chen, X.; Li, P. A Computational Biology Study on the Structure and Dynamics Determinants of Thermal Stability of the Chitosanase from Aspergillus fumigatus. Int. J. Mol. Sci. 2023, 24, 6671. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Wang, S.; Wang, G. Improved Enzymatic Properties of Chitosanase CsnMY002 from Bacillus subtilis via Computational Design. Int. J. Mol. Sci. 2025, 26, 1588. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Xu, C.; Hao, W.; Xing, R.; Liu, S.; Yu, H.; Li, P. Screening for Aspergillus fumigatus strain-2T-2 with high chitosanase production activity and its application in chitosan degradation. Electron. J. Biotechnol. 2024, 68, 57–66. [Google Scholar] [CrossRef]
- Jung, W.-J.; Kuk, J.-H.; Kim, K.-Y.; Jung, K.-C.; Park, R.-D. Purification and characterization of exo-β-d-glucosaminidase from Aspergillus fumigatus S-26. Protein Expr. Purif. 2006, 45, 125–131. [Google Scholar] [CrossRef]
- Akram, F.; Haq, I.U.; Aqeel, A.; Ahmed, Z.; Shah, F.I. Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations. Renew. Sustain. Energy Rev. 2021, 151. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Cao, S.; Zhu, B.; Yao, Z. An updated comprehensive review of advances on structural features, catalytic mechanisms, modification methods and applications of chitosanases. Process. Biochem. 2022, 118, 263–273. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Kidibule, P.E.; Alleyne, E.; Ballesteros, A.O.; Heras, A.; Fernandez-Lobato, M.; Plou, F.J. Efficient conversion of chitosan into chitooligosaccharides by a chitosanolytic activity from Bacillus thuringiensis. Process. Biochem. 2018, 73, 102–108. [Google Scholar] [CrossRef]
- Izume, M.; Nagae, S.I.; Kawagishi, H.; Mitsutomi, M.; Ohtakara, A. Action pattern of Bacillus sp. No. 7-M chitosanase on partially N-acetylated chitosan. Biosci. Biotechnol. Biochem. 1992, 56, 448–453. [Google Scholar] [CrossRef]
- Singh, R.; Weikert, T.; Basa, S.; Moerschbacher, B.M. Structural and biochemical insight into mode of action and subsite specificity of a chitosan degrading enzyme from Bacillus spec. MN. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Z.; Fan, L.; Zhao, L. Structure–function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. Int. J. Biol. Macromol. 2020, 165, 2038–2048. [Google Scholar] [CrossRef]
- Su, H.; Zhao, H.; Jia, Z.; Guo, C.; Sun, J.; Mao, X. Biochemical Characterization of a GH46 Chitosanase Provides Insights into the Novel Digestion Specificity. J. Agric. Food Chem. 2023, 71, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Sun, J.; Chu, W.; Yuan, B.; Mao, X. Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Appl. Microbiol. Biotechnol. 2022, 106, 1979–1990. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Ma, S.; Guan, L.; Yan, Q.; Yang, S. Biochemical characterization of a novel bifunctional chitosanase from Paenibacillus barengoltzii for chitooligosaccharide production. World J. Microbiol. Biotechnol. 2021, 37, 1–13. [Google Scholar] [CrossRef]
- Wang, S.-L.; Peng, J.-H.; Liang, T.-W.; Liu, K.-C. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 2008, 343, 1316–1323. [Google Scholar] [CrossRef]
- Wang, S.-L.; Tseng, W.-N.; Liang, T.-W. Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation 2011, 22, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Tran, T.D.; Nguyen, A.D.; Wang, S.-L. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers 2020, 12, 1163. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Wen, I.-H.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus sp. Catalysts 2019, 9, 798. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, H.; Hu, Z.; Liu, B.; Zhang, Z.; Fang, Y.; Hou, X.; Liu, S.; Yang, G. Production, Characterization and Application of a Novel Chitosanase from Marine Bacterium Bacillus paramycoides BP-N07. Foods 2023, 12, 3350. [Google Scholar] [CrossRef]
- Zheng, Q.; Meng, X.; Cheng, M.; Li, Y.; Liu, Y.; Chen, X. Cloning and Characterization of a New Chitosanase From a Deep-Sea Bacterium Serratia sp. QD07. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Zhang, R.-X.; Wu, Z.-W.; Zhang, S.-J.; Wei, H.-M.; Hua, C.-W.; Li, L.; Yang, T.-Y. Gene cloning and molecular characterization of a thermostable chitosanase from Bacillus cereus TY24. BMC Biotechnol. 2022, 22, 1–12. [Google Scholar] [CrossRef]
- Chulhong, O.; Zoysa, M.D.; Kang, D.-H.; Lee, Y.-D.; Whang, I.-S.; Nikapitiya, C.; Heo, S.-J.; Yoon, K.-T.; Affan, A.; Lee, J.-H. Isolation, purification, and enzymatic characterization of extracellular chitosanase from marine bacterium Bacillus subtilis CH2. Appl. Biochem. Biotechnol. 2011, 21, 1021–1025. [Google Scholar]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Production of a Thermostable Chitosanase from Shrimp Heads via Paenibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides. Mar. Drugs 2019, 17, 217. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Tran, T.P.H.; Nguyen, T.T.; Nguyen, H.K.; Tran, T.K.T.; Vu, B.T.; Trinh, T.H.T.; Nguyen, A.D.; Wang, S.-L. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers 2023, 15, 3724. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Zhang, T.; Zhao, H. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered 2021, 12, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Gao, P.; Xia, W.; Liu, S.; Wang, B. A Novel Chitosanase from Penicillium oxalicum M2 for Chitooligosaccharide Production: Purification, Identification and Characterization. Mol. Biotechnol. 2022, 64, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Huang, C.-C.; Liang, T.-W.; Nguyen, V.B.; Pan, P.-S.; Wang, S.-L. Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydr. Polym. 2014, 108, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Abedin, R.M.A.; Elwaly, D.R.M.A.; El-Salam, A.E.A. Production, statistical evaluation and characterization of chitosanase from Fusarium oxysporum D18. Ann. Microbiol. 2023, 73, 1–14. [Google Scholar] [CrossRef]
- Shehata, A.N.; Abeer, A.A.E.A. Improved production and partial characterization of chitosanase from a newly isolated Chaetomium globosum KM651986 and its application for chitosan oligosaccharides. J. Chem. Pharm. Res. 2015, 7, 727–740. [Google Scholar]
- Sinha, S.; Tripathi, P.; Chand, S. A New Bifunctional Chitosanase Enzyme from Streptomyces sp. and Its Application in Production of Antioxidant Chitooligosaccharides. Appl. Biochem. Biotechnol. 2012, 167, 1029–1039. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, D.; Chen, L.; Yang, G.; Zou, S. Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydr. Res. 2012, 355, 40–44. [Google Scholar] [CrossRef]
- Vanathia, P.; Premasudha, P.; Rajendran, D.R. Production and Characterization of Chitosanase Enzyme from Streptomyces sp. Isolated from Biowaste Soil Samples. IJPBS. 2016, 7, 302–313. [Google Scholar]
- Cai, D.; Rao, Y.; Zhan, Y.; Wang, Q.; Chen, S. Engineering Bacillus for efficient production of heterologous protein: Current progress, challenge and prospect. J. Appl. Microbiol. 2019, 126, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef]
- Zhang, K.; Su, L.; Wu, J. Recent Advances in Recombinant Protein Production by Bacillus subtilis. Annu. Rev. Food Sci. Technol. 2020, 11, 295–318. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol. Adv. 2018, 36, 182–195. [Google Scholar] [CrossRef]
- Su, H.; Sun, J.; Guo, C.; Jia, Z.; Mao, X. Heterogenously-expressed chitosanase combining a green ball milling method for enzymatic degradation. Food Bioeng. 2022, 1, 37–46. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, Q.; Lin, S.; Luo, S.; Qiu, Y.; Zhao, L. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem. 2018, 253, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Sun, J.; Wang, W.; Gao, L.; Liu, J.; Liu, Z.; Xue, C.; Mao, X. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food Chem. 2019, 286, 696–702. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Zhu, B.; Yao, Z.; Jiang, L. Purification and biochemical characterization of a novel chitosanase cloned from the gene of Kitasatospora setae KM-6054 and its application in the production of chitooligosaccharides. World J. Microbiol. Biotechnol. 2023, 39, 1–10. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, X.; Wu, Y.; Niu, T.; Liu, Y.; Li, J.; Du, G.; Liu, L. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab. Eng. 2018, 50, 109–121. [Google Scholar] [CrossRef]
- Su, P.-C.; Hsueh, W.-C.; Chang, W.-S.; Chen, P.T. Enhancement of chitosanase secretion by Bacillus subtilis for production of chitosan oligosaccharides. J. Taiwan Inst. Chem. Eng. 2017, 79, 49–54. [Google Scholar] [CrossRef]
- Kang, L.-X.; Chen, X.-M.; Fu, L.; Ma, L.-X. Recombinant expression of chitosanase from Bacillus subtilis HD145 in Pichia pastoris. Carbohydr. Res. 2012, 352, 37–43. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, X.; Yuan, F.; Deng, B.; Yu, X. Biocatalysis of Heterogenously-Expressed Chitosanase for the Preparation of Desirable Chitosan Oligosaccharides Applied against Phytopathogenic Fungi. ACS Sustain. Chem. Eng. 2020, 8, 4781–4791. [Google Scholar] [CrossRef]
- Luo, S.; Qin, Z.; Chen, Q.; Fan, L.; Jiang, L.; Zhao, L. High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation. Int. J. Biol. Macromol. 2020, 149, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, J.; Gu, Q.; Sun, R.; Yang, W.; Lu, Y.; Wang, C.; Yu, X. Heterologous expression of GH5 chitosanase in Pichia pastoris and antioxidant biological activity of its chitooligosacchride hydrolysate. J. Biotechnol. 2022, 348, 55–63. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, T.; Sun, C.; Zhang, H.; Zhang, Y. A Chitosanase mutant from Streptomyces sp. N174 prefers to produce functional chitopentasaccharide. Int. J. Biol. Macromol. 2020, 151, 1091–1098. [Google Scholar] [CrossRef]
- Sun, H.; Cao, R.; Li, L.; Zhao, L.; Liu, Q. Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis. Process. Biochem. 2018, 75, 146–151. [Google Scholar] [CrossRef]
- Yang, G.; Sun, H.; Cao, R.; Liu, Q.; Mao, X. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5. Int. J. Biol. Macromol. 2020, 146, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Mao, X.; Guo, N.; Zhao, L.; Cao, R.; Liu, Q. Discovery and Characterization of a Novel Chitosanase from Paenibacillus dendritiformis by Phylogeny-Based Enzymatic Product Specificity Prediction. J. Agric. Food Chem. 2018, 66, 4645–4651. [Google Scholar] [CrossRef]
- Saito, A.; Ooya, T.; Miyatsuchi, D.; Fuchigami, H.; Terakado, K.; Nakayama, S.-y.; Watanabe, T.; Nagata, Y.; Ando, A. Molecular characterization and antifungal activity of a family 46 chitosanase from Amycolatopsis sp. CsO-2. FEMS Microbiol. Lett. 2009, 293, 79–84. [Google Scholar] [CrossRef]
- Qin, Z.; Luo, S.; Li, Y.; Chen, Q.; Qiu, Y.; Zhao, L.; Jiang, L.; Zhou, J. Biochemical properties of a novel chitosanase from Bacillus amyloliquefaciens and its use in membrane reactor. LWT. 2018, 97, 9–16. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Li, J.; Zong, H.; Chen, Y.; Zhou, J.; Li, X.; Ye, X. Characterization of a Novel Acid-Stable Chitosanase from Lentinula edodes Suitable for Chitooligosaccharide Preparation. Foods 2024, 13, 3127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Tong, S.; Yuan, M.; Wang, X.; Wang, J.; Fan, Y. Expression of a Beauveria bassiana chitosanase (BbCSN-1) in Pichia pastoris and enzymatic analysis of the recombinant protein. Protein Expr. Purif. 2020, 166, 105519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, H.; Li, S.; Zhao, Y.; Wang, W.; Xu, Q.; Du, Y.; Yin, H. Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. Int. J. Biol. Macromol. 2015, 81, 362–369. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Xiao, Y.; Zhang, J.; Zhou, Y.; Li, X.; Li, S.; Yu, H. Cloning and Characterization of a Cold-adapted Chitosanase from Marine Bacterium Bacillus sp. BY01. Molecules 2019, 24, 3915. [Google Scholar] [CrossRef]
- Cao, S.; Gao, P.; Xia, W.; Liu, S.; Liu, X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process. Biochem. 2022, 120, 41–52. [Google Scholar] [CrossRef]
- Su, H.; Sun, J.; Guo, C.; Wang, Y.; Secundo, F.; Dong, H.; Mao, X. Structure-based mining of a chitosanase with distinctive degradation mode and product specificity. Appl. Microbiol. Biotechnol. 2023, 107, 6859–6871. [Google Scholar] [CrossRef]
- Li, Y.; Gou, Y.; Liu, Z.; Xie, T.; Wang, G. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose. Colloid Surface B. 2021, 202, 111692. [Google Scholar] [CrossRef]
- Cui, D.; Yang, J.; Lu, B.; Shen, H. Efficient Preparation of Chitooligosaccharide With a Potential Chitosanase Csn-SH and Its Application for Fungi Disease Protection. Front. Microbiol. 2021, 12, 682829. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Liu, M.; Xia, C.; Fan, Q.; Li, X.; Lan, Z.; Shi, G.; Dong, W.; Li, Z.; et al. Preparation of Active Chitooligosaccharides with a Novel Chitosanase AqCoA and Their Application in Fungal Disease Protection. J. Agric. Food Chem. 2021, 69, 3351–3361. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, P.; Zhu, M.; Chen, W.; Yu, S.; Zhong, B. Overexpression and Biochemical Properties of a GH46 Chitosanase From Marine Streptomyces hygroscopicus R1 Suitable for Chitosan Oligosaccharides Preparation. Front. Microbiol. 2022, 12, 816845. [Google Scholar] [CrossRef]
- Lacombe-Harvey, M.; Fortin, M.; Ohnuma, T.; Fukamizo, T.; Letzel, T.; Brzezinski, R. A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding. BMC Biochem. 2013, 14, 23. [Google Scholar] [CrossRef]
- Takasuka, T.E.; Bianchetti, C.M.; Tobimatsu, Y.; Bergeman, L.F.; Ralph, J.; Fox, B.G. Structure-guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces sp. SirexAA-E. Proteins: Struct. Funct. Genet. 2014, 82, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cheng, G.; Jiao, S.; Ren, L.; Zhao, C.; Wei, J.; Han, J.; Pei, M.; Du, Y.; Li, J.-J. Expression and Biochemical Characterization of a Novel Marine Chitosanase from Streptomyces niveus Suitable for Preparation of Chitobiose. Mar. Drugs 2021, 19, 300. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Gao, W.; Wang, X.; Gao, X.; Man, Z.; Cai, Z.; Qing, Q. Gene Cloning, Functional Expression, and Characterization of a Novel GH46 Chitosanase from Streptomyces avermitilis (SaCsn46A). Appl. Biochem. Biotechnol. 2021, 194, 813–826. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, S.; Wang, S.; Li, X.; Su, L.; Ma, Y.; Li, J.; Song, J. Extracellular Overexpression of Chitosanase from Bacillus sp. TS in Escherichia coli. Appl. Biochem. Biotechnol. 2015, 175, 3271–3286. [Google Scholar] [CrossRef]
- Chen, H.; Lin, B.; Zhang, R.; Gong, Z.; Wen, M.; Su, W.; Zhou, J.; Zhao, L.; Wang, J. Controllable preparation of chitosan oligosaccharides via a recombinant chitosanase from marine Streptomyces lydicus S1 and its potential application on preservation of pre-packaged tofu. Front. Microbiol. 2022, 13, 1007201. [Google Scholar] [CrossRef]
- Aktuganov, G.E.; Safina, V.R.; Galimzianova, N.F.; Gilvanova, E.A.; Kuzmina, L.Y.; Melentiev, A.I.; Baymiev, A.H.; Lopatin, S.A. Constitutive chitosanase from Bacillus thuringiensis B-387 and its potential for preparation of antimicrobial chitooligomers. World J. Microbiol. Biotechnol. 2022, 38, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Chen, H.; Lin, B.; Zhao, L. Heterologous Expression and Characterization of a High-Efficiency Chitosanase From Bacillus mojavensis SY1 Suitable for Production of Chitosan Oligosaccharides. Front. Microbiol. 2021, 12, 781138. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, F.; Akgün, I.H.; Khazi, M.I.; Eltem, R. Characterization of different chitosanases of Bacillus strains and their application in chitooligosaccharides production. J. Basic Microbiol. 2022, 63, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Qin, Z.; Chen, Q.; Fan, L.; Zhou, J.; Zhao, L. Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides. J. Agric. Food Chem. 2019, 67, 6847–6855. [Google Scholar] [CrossRef]
- Han, Y.; Gao, P.; Yu, W.; Lu, X. N-Terminal seven-amino-acid extension simultaneously improves the pH stability, optimal temperature, thermostability and catalytic efficiency of chitosanase CsnA. Biotechnol. Lett. 2017, 40, 75–82. [Google Scholar] [CrossRef]
- Jia, Z.; Su, H.; Zhao, Q.; Wang, S.; Sun, J.; Mao, X. Structure-Assisted Design of Chitosanase Product Specificity for the Production of High-Degree Polymerization Chitooligosaccharides. J. Agric. Food Chem. 2024, 72, 19081–19092. [Google Scholar] [CrossRef]
- Jing, G.; Wenjun, G.; Yi, W.; Kepan, X.; Wen, L.; Tingting, H.; Zhiqiang, C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr. Microbiol. 2023, 80, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, C.; Ma, Y.; Liu, K.; Fu, X.; Xing, S. Exploration of the Product Specificity of chitosanase CsnMY002 and Mutants Using Molecular Dynamics Simulations. Molecules 2023, 28, 1048. [Google Scholar] [CrossRef]
- Guo, J.; Gao, W.; Zhang, X.; Pan, W.; Zhang, X.; Man, Z.; Cai, Z. Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242. Biotechnol. J. 2023, 19, e2300010. [Google Scholar] [CrossRef]
- Zhou, J.; Gu, Q.; Shen, Y.; Harindintwali, J.D.; Yang, W.; Zou, S.; Han, M.; Ma, C.; Yu, X.; Liu, X. Enhancement of the performance of the GH75 family chitosanases by fusing a carbohydrate binding module and insights into their substrate binding mechanisms. LWT. 2022, 163, 113390. [Google Scholar] [CrossRef]
- Guo, J.; Gao, W.; Wang, J.; Yao, Y.; Man, Z.; Cai, Z.; Qing, Q. Thr22 plays an important role in the efficient catalytic process of Bacillus subtilis chitosanase BsCsn46A. Enzym. Microb. Technol. 2023, 167, 110242. [Google Scholar] [CrossRef]
- Han, Y.; Yu, R.; Gao, P.; Lu, X.; Yu, W. The hydrogen-bond network around Glu160 contributes to the structural stability of chitosanase CsnA from Renibacterium sp. QD1. Int. J. Biol. Macromol. 2018, 109, 880–887. [Google Scholar] [CrossRef]
- Xu, K.; Fu, H.; Chen, Q.; Sun, R.; Li, R.; Zhao, X.; Zhou, J.; Wang, X. Engineering thermostability of industrial enzymes for enhanced application performance. Int. J. Biol. Macromol. 2024, 291, 139067. [Google Scholar] [CrossRef]
- Wang, S.-L.; Liang, T.-W. Microbial reclamation of squid pens and shrimp shells. Res. Chem. Intermed. 2016, 43, 3445–3462. [Google Scholar] [CrossRef]
- Li, K.C.; Xing, R.G.; Liu, S.; Qin, Y.K.; Yu, H.H.; Li, P.C. Size and pH effects of chitooligomers on antibacterial activity against Staphylococcus aureus. Int. J. Biol. Macromol. 2014, 64, 302–305. [Google Scholar] [CrossRef]
- Zhai, X.; Li, C.; Ren, D.; Wang, J.; Ma, C.; El-Aty, A.A. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydr. Polym. 2021, 266, 118132. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, M.; Wu, H.; Jiao, Y.; Zhou, C. Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomater. Sci. Eng. 2020, 6, 1614–1629. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Liu, Y.; Li, K.; Yu, H.; Liu, S.; Yang, Y.; Chen, X.; Li, P. Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities. Carbohydr. Polym. 2017, 157, 1288–1297. [Google Scholar] [CrossRef]
- de Andrade, R.C.L.C.; de Araújo, N.K.; Torres-Rêgo, M.; Furtado, A.A.; Daniele-Silva, A.; Paiva, W.d.S.; Dantas, J.M.d.M.; da Silva, N.S.; da Silva-Júnior, A.A.; Ururahy, M.A.G.; et al. Production and Characterization of Chitooligosaccharides: Evaluation of Acute Toxicity, Healing, and Anti-Inflammatory Actions. Int. J. Mol. Sci. 2021, 22, 10631. [Google Scholar] [CrossRef]
- Nguyen, O.T.K.; Chen, P.-T.; Nargotra, P.; Chen, S.-C.; Cheng, C.-Y.; Wang, H.-M.D.; Liu, Y.-C.; Kuo, C.-H. Sustainable bacterial chitosanase production using soybean meal hydrolysate: Insights into biochemical and hydrolysis characteristics. Process. Biochem. 2025, 150, 202–212. [Google Scholar] [CrossRef]
- Maria de Medeiros Dantas, J.M.; Silva, N.S.d; Padilha, C.E.d.A.; Kelly de Araújo, N.; Santos, E.S.D. Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. Biocatal. Agric. Biotechnol. 2020, 28, 101759. [Google Scholar] [CrossRef]
- El-Sayed, S.T.; Omar, N.I.; El-Sayed, E.-S.M.; Shousha, W.G. Kinetic and stability improvement of immobilized pepper chitosanase on chitin by covalent bond. Saudi J. Med. Pharm. Sci. 2017, 3, 957–965. [Google Scholar]
- Kuroiwa, T.; Nakagawa, Y.; Takayanagi, R.; Kanazawa, A. Chitosanase-immobilized magnetite-agar gel particles as a highly stable and reusable biocatalyst for enhanced production of physiologically active chitosan oligosaccharides. Enzym. Microb. Technol. 2024, 178, 110443. [Google Scholar] [CrossRef]
- Wang, W.; Guo, N.; Huang, W.; Zhang, Z.; Mao, X. Immobilization of Chitosanases onto Magnetic Nanoparticles to Enhance Enzyme Performance. Catalysts 2018, 8, 401. [Google Scholar] [CrossRef]
- El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Song, F.; Gui, T.; Xiang, J. Purification and Characterization of Chitinases from Ridgetail White Prawn Exopalaemon carinicauda. Molecules 2015, 20, 1955–1967. [Google Scholar] [CrossRef]
- Liaqat, F.; Eltem, R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr. Polym. 2018, 184, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Santos-Moriano, P.; Woodley, J.M.; Plou, F.J. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. J. Mol. Catal. B: Enzym. 2016, 133, 211–217. [Google Scholar] [CrossRef]
- Kuo, C.; Chen, C.; Chiang, B.H. Process Characteristics of Hydrolysis of Chitosan in a Continuous Enzymatic Membrane Reactor. J. Food Sci. 2004, 69, 332–337. [Google Scholar] [CrossRef]
- Jung, W.-J.; Park, R.-D. Bioproduction of Chitooligosaccharides: Present and Perspectives. Mar. Drugs 2014, 12, 5328–5356. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Kim, S.-K. Continuous production of chitooligosaccharides using a dual reactor system. Process. Biochem. 2000, 35, 623–632. [Google Scholar] [CrossRef]
Expression Host System | Advantages | Limitations | References |
---|---|---|---|
E. coli | Rapid growth; high-cell-density cultivation; low-cost media; ease of genetic manipulation | Protein overexpression may impose metabolic burden; limited folding of complex proteins | [45] |
Bacillus subtilis | Non-pathogenic; genetically well-characterized; strong protein secretion; suitable for industrial fermentation | Expression efficiency is strain-dependent; extracellular proteases may degrade recombinant proteins | [46] |
P. pastoris | Eukaryotic folding and glycosylation; high-cell-density fermentation; efficient secretion of active enzymes | Requires methanol induction; relatively long cultivation times; higher cost and operational complexity | [47] |
Microorganism (Native Source) | Isolated Sources | Chitosanase Family | Chitosanase Name | Expression Host | Specific Activity (U/mg) * | Notable Property | Reference |
---|---|---|---|---|---|---|---|
Bacillus sp. TS | Soil | GH8 | CsnTS | E. coli | 566 | - | [6] |
P. barengoltzii | Marine | GH8 | PbCsn8 | B. subtilis | 360.4 | Bifunctional | [25] |
Serratia sp. QD07 | Deep-sea mud | GH46 | CsnS | E. coli | 412.6 | Cold-adapted | [31] |
Bacillus cereus TY24 | Seafood waste | GH8 | CHOE | E. coli | 1150 | - | [32] |
Paenibacillus tyrfis | Peat swamp soil | GH46 | OUC-CsnPT | E. coli | 5346.56 | - | [48] |
Gynuella sunshinyii | Rhizosphere of a halophyte | GH46 | GsCsn46A | E. coli | 260.87 | Cold-adapted | [49] |
Streptomyces alblongus | - | GH46 | Csn21c | E. coli | 336.2 | - | [50] |
Kitasatospora setae KM-6054 | Soil | GH46 | CscB | E. coli | 1094.21 | Cold-adapted | [51] |
Bacillus subtilis 168 | - | GH46 | Csn | B. subtilis | 208.23 U/mL | - | [53] |
Aspergillus fumigatus | Marine soil | GH75 | Csn75 | P. pastoris | 13 U/mL | Crude Csn75 (30 U/mL); 90.65% COSs after 4 h | [55] |
Bacillus amlyoliquefaciens | Seafood waste | GH46 | BaCsn46B | P. pastoris | 2380.5 | - | [56] |
Streptomyces griseus HUT 6037 | - | GH5 | Csn5 | P. pastoris | 90.62 U/mL | Crude Csn5 (20 U/mL); 91.2% COSs after 8 h | [57] |
Streptomyces sp. N174 | Soil | GH46 | SsCsn46 | P. pastoris | 50,000 | - | [58] |
Staphylococcus capitis | - | GH46 | Csn-CAP | E. coli | 89.2 | Cold-adapted | [59] |
Bacillus sp. MD-5 | - | GH46 | Csn-BAC | E. coli | 41.67 | - | [60] |
Paenibacillus dendritiformis | - | GH46 | Csn-PD | E. coli | 76.4 | - | [61] |
Amycolatopsis sp. CsO-2 | Soil | GH46 | CtoA | E. coli | 88 | Antifungal | [62] |
Bacillus amyloliquefaciens XY-01 | Fermented fruits beverages | GH46 | BaCsn46A | E. coli | 1031.2 | - | [63] |
Lentinula edodes | - | GH75 | LeCho1 | E. coli | 71.88 | Acid stable | [64] |
Beauveria bassiana | Insect | GH75 | BbCSN-1 | P. pastoris | 101.11 | Cold-adapted | [65] |
Aspergillus sp. W-2 | Soil | GH75 | CsnW2 | P. pastoris | 34 | - | [66] |
Bacillus sp. BY01 | Sea sediment | GH46 | CsnB | E. coli | 329.3 | Cold-adapted | [67] |
Penicillium oxalicum M2 | Bird fecal | GH75 | PoCSN75A | P. pastoris | 2.31 | - | [68] |
Enzyme | Mutation(s) | Engineering Strategy | Targeted Property | Observed Improvement | Reference |
---|---|---|---|---|---|
BcCn8A (Bacillus cereus GX-90) | BcCn8A-ΔN4-V319L | Site-directed mutagenesis | Catalytic efficiency Thermal stability | 310% increase in specific activity, retained 93.2% activity at 50 °C vs. 42.1% (WT), over 60% of its activity across the 50–70 °C | [5] |
CsnTS (Bacillus sp. TS) | S265G, S276A and S347G | Site-directed mutagenesis | Thermostability | t1/2 at 60 oC increased from 5.32 min to 34.57 (S265G), 36.79 (S276A), 7.2 (S347G) min | [6] |
BsCsn46A (Bacillus subtilis) | P121N, P121C, P121V | Site-saturation mutagenesis | Catalytic efficiency | Specific activity increased up to 1.69-, 1.97-, and 2.15-fold for P121N, P121C, and P121V, respectively, no loss of thermostability in P121N | [8] |
Csn46 (Bacillus amyloliquefaciens KCP2) | Mut4 (A129L/T175V/K70T/D34G) | Site-directed mutagenesis | Catalytic efficiency Thermal stability Product profile | Specific activity increased from 1671.73 to 3528.77 U/mg t1/2 at 60 oC increased from 34.31 to 690.80 min expanded product range (DP 2–7) at 70 oC | [9] |
Csn-PD (Paenibacillus dendritiformis) | Csn-PDT6 (I101M/T120E/T220G) | Site-directed mutagenesis | Catalytic efficiency pH stability | 8-fold increase in catalytic activity compared to the WT, Csn-PD was stable only at pH 6–7, while Csn-PDT6 retained >66% relative activity after incubation at pH 4–9 | [10] |
SaCsn46A (Streptomyces avermitilis) | TJA | Site-directed mutagenesis | Product profile | Shifted product ratio (chitobiose: chitotriose) from 1:1 to 15:7 | [11] |
CsnMY002 (Bacillus subtilis) | Mut6 | Site-directed mutagenesis | Thermal stability | t1/2 value at 55 °C and 75 °C increased by 1.80 and 1.62 times, respectively compared with WT | [14] |
Mut2 | Catalytic efficiency | 1.52 times increase in catalytic efficiency compared to WT | [14] | ||
SsCsn46 (Streptomyces sp. N174) | m-SsCsn46 | Site-directed mutagenesis | Product profile | Shifted hydrolysis product from COSs (DP 3–5) to mainly chitopentasaccharide (DP5) | [58] |
CsnMY002 (Bacillus subtilis) | G21 K | Site-saturation mutagenesis | Product profile | ~87% of chitobiose for G21 K mutant, ~57% of that for the WT | [70] |
OUC-CsnA4 (Methanosarcina sp. 1.H.T.1A.1) | S49I and S49P | Site-saturation mutagenesis | Product specificity | Enabled production of (GlcN)5 (up to 24% for S49I, 26% for S49P); WT produced no detectable (GlcN)5 | [85] |
BaCsn46A (Bacillus amyloliquefaciens) | S196A | Site-saturation mutagenesis | Catalytic efficiency Thermal stability | Specific activity increased by 118.79%, remained above 80% at 60 °C | [86] |
CsnMY002 (Bacillus subtilis) | G21R and G21K | Molecular dynamics simulations | Product profile DP diversity of COSs | Increased COS yield; altered substrate binding and catalytic modes → greater DP variation in products | [87] |
BsCsn46A (Bacillus subtilis) | K242P | Site-saturation mutagenesis | Catalytic efficiency Thermal stability | The catalytic activity of K242P increased from 12,971 ± 597 U/mg of wild type to 17,820 ± 344 U/mg, and the thermostability of K242P increased by 2.27% | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, O.T.K.; Nargotra, P.; Chen, P.-T.; Shieh, C.-J.; Liu, Y.-C.; Kuo, C.-H. Advances in Chitosanase Research: From Structure and Function to Green Biocatalytic Production of Chitooligosaccharides. Catalysts 2025, 15, 863. https://doi.org/10.3390/catal15090863
Nguyen OTK, Nargotra P, Chen P-T, Shieh C-J, Liu Y-C, Kuo C-H. Advances in Chitosanase Research: From Structure and Function to Green Biocatalytic Production of Chitooligosaccharides. Catalysts. 2025; 15(9):863. https://doi.org/10.3390/catal15090863
Chicago/Turabian StyleNguyen, Oanh Thi Kim, Parushi Nargotra, Po-Ting Chen, Chwen-Jen Shieh, Yung-Chuan Liu, and Chia-Hung Kuo. 2025. "Advances in Chitosanase Research: From Structure and Function to Green Biocatalytic Production of Chitooligosaccharides" Catalysts 15, no. 9: 863. https://doi.org/10.3390/catal15090863
APA StyleNguyen, O. T. K., Nargotra, P., Chen, P.-T., Shieh, C.-J., Liu, Y.-C., & Kuo, C.-H. (2025). Advances in Chitosanase Research: From Structure and Function to Green Biocatalytic Production of Chitooligosaccharides. Catalysts, 15(9), 863. https://doi.org/10.3390/catal15090863