Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of xP-Al-O Catalysts
2.2. Catalytic Performance
2.3. Stability of the Catalysts
3. Materials and Reagents
3.1. Preparation of xP-Al-O
3.2. Characterization
3.3. Catalytic Performance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative Fuel Options for Low Carbon Maritime Transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Tomatis, M.; Kumar Jeswani, H.; Azapagic, A. Environmental Impacts of Valorisation of Crude Glycerol from Biodiesel Production—A Life Cycle Perspective. Waste Manag. 2024, 179, 55–65. [Google Scholar] [CrossRef]
- Nanda, M.R.; Zhang, Y.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Xu, C. Catalytic Conversion of Glycerol for Sustainable Production of Solketal as a Fuel Additive: A Review. Renew. Sustain. Energy Rev. 2016, 56, 1022–1031. [Google Scholar] [CrossRef]
- Ilgen, O.; Yerlikaya, S.; Akyurek, F.O. Synthesis of Solketal from Glycerol and Acetone over Amberlyst-46 to Produce an Oxygenated Fuel Additive. Period. Polytech. Chem. Eng. 2016, 61, 144–148. [Google Scholar] [CrossRef]
- Moklis, M.H.; Cheng, S.; Cross, J.S. Current and Future Trends for Crude Glycerol Upgrading to High Value-Added Products. Sustainability 2023, 15, 2979. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Frey, A.M.; Bitter, J.H.; Segarra, A.M.; De Jong, K.P.; Medina, F. On the Role of the Activation Procedure of Supported Hydrotalcites for Base Catalyzed Reactions: Glycerol to Glycerol Carbonate and Self-Condensation of Acetone. Appl. Catal. B Environ. 2013, 134–135, 231–237. [Google Scholar] [CrossRef]
- Deutsch, J.; Martin, A.; Lieske, H. Investigations on Heterogeneously Catalysed Condensations of Glycerol to Cyclic Acetals. J. Catal. 2007, 245, 428–435. [Google Scholar] [CrossRef]
- Agirre, I.; García, I.; Requies, J.; Barrio, V.L.; Güemez, M.B.; Cambra, J.F.; Arias, P.L. Glycerol Acetals, Kinetic Study of the Reaction between Glycerol and Formaldehyde. Biomass Bioenergy 2011, 35, 3636–3642. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, N.; Chu, X.; Sun, F.; Ali, M.U.; Zhang, Y.; Yang, B.; Cai, Y.; Liu, M.; Gasparini, N.; et al. Wide-Humidity Range Applicable, Anti-Freezing, and Healable Zwitterionic Hydrogels for Ion-Leakage-Free Iontronic Sensors. Adv. Mater. 2023, 35, 2211617. [Google Scholar] [CrossRef]
- Cornejo, A.; Barrio, I.; Campoy, M.; Lázaro, J.; Navarrete, B. Oxygenated Fuel Additives from Glycerol Valorization. Main Production Pathways and Effects on Fuel Properties and Engine Performance: A Critical Review. Renew. Sustain. Energy Rev. 2017, 79, 1400–1413. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, Y.; Tong, J.; Liu, P.; Sun, P. Electrochemical Oxidative C−H Cyanation of Quinoxalin-2(1H)-ones with TMSCN. Eur. J. Org. Chem. 2021, 2021, 2193–2197. [Google Scholar] [CrossRef]
- Vannucci, J.A.; Gatti, M.N.; Cardaci, N.; Nichio, N.N. Economic Feasibility of a Solketal Production Process from Glycerol at Small Industrial Scale. Renew. Energy 2022, 190, 540–547. [Google Scholar] [CrossRef]
- Suriyaprapadilok, N.; Kitiyanan, B. Synthesis of Solketal from Glycerol and Its Reaction with Benzyl Alcohol. Energy Procedia 2011, 9, 63–69. [Google Scholar] [CrossRef]
- Kowalska-Kus, J.; Held, A.; Nowinska, K. Enhancement of the Catalytic Activity of H-ZSM-5 Zeolites for Glycerol Acetalization by Mechanical Grinding. React. Kinet. Mech. Catal. 2016, 117, 341–352. [Google Scholar] [CrossRef]
- Wegenhart, B.L.; Liu, S.; Thom, M.; Stanley, D.; Abu-Omar, M.M. Solvent-Free Methods for Making Acetals Derived from Glycerol and Furfural and Their Use as a Biodiesel Fuel Component. ACS Catal. 2012, 2, 2524–2530. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Németh, Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhelavskyi, O.; Lee, J.; Argüelles, A.J.; Khomutnyk, Y.Y.; Mensah, E.; Guo, H.; Hourani, R.; Zimmerman, P.M.; Nagorny, P. Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides. J. Am. Chem. Soc. 2021, 143, 18592–18604. [Google Scholar] [CrossRef]
- Kanai, S.; Nagahara, I.; Kita, Y.; Kamata, K.; Hara, M. A Bifunctional Cerium Phosphate Catalyst for Chemoselective Acetalization. Chem. Sci. 2017, 8, 3146–3153. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Zhou, R.; Hou, Z. Acetalization of Glycerol with Acetone over Appropriately-Hydrophobic Zirconium Organophosphonates. Appl. Clay Sci. 2020, 189, 105555. [Google Scholar] [CrossRef]
- Tang, G.; Wang, R.; Yang, X.; Shu, C.; Wang, Y.; Tang, G. Influence of Al2O3 addition on the structure of AlPO4 catalystand its catalytic properties for acetalization. Ind. Catal. 2012, 17, 17–21. [Google Scholar] [CrossRef]
- Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.-A.; Xu, C. A New Continuous-Flow Process for Catalytic Conversion of Glycerol to Oxygenated Fuel Additive: Catalyst Screening. Appl. Energy 2014, 123, 75–81. [Google Scholar] [CrossRef]
- Shirani, M.; Ghaziaskar, H.S.; Xu, C. (Charles) Optimization of Glycerol Ketalization to Produce Solketal as Biodiesel Additive in a Continuous Reactor with Subcritical Acetone Using Purolite® PD206 as Catalyst. Fuel Process. Technol. 2014, 124, 206–211. [Google Scholar] [CrossRef]
- Farooq, M.; Zaid, F.; Ramli, A.; Perveen, F.; Naeem, A.; Khan, I.W.; Ghazi, Z.A.; Ur Rehman, A. Development of Porous WO3/SAPO-34 Solid Catalyst for the Conversion of Glycerol to Fuel Performance Improving Bio-Additive (Solketal). Arab. J. Sci. Eng. 2025, 50, 93–105. [Google Scholar] [CrossRef]
- Dawaymeh, F.; Elmutasim, O.; Gaber, D.; Gaber, S.; Reddy, K.S.K.; Basina, G.; Polychronopoulou, K.; Al Wahedi, Y.; Karanikolos, G.N. Metal Substitution Effects of Aluminophosphate AlPO4-5 as Solid Acid Catalyst for Esterification of Acetic Acid with Ethanol. Mol. Catal. 2021, 501, 111371. [Google Scholar] [CrossRef]
- Mao, H.; Li, X.; Xu, F.; Xiao, Z.; Zhang, W.; Meng, T. Vapour-Phase Selective O-Methylation of Catechol with Methanol over Metal Phosphate Catalysts. Catalysts 2021, 11, 531. [Google Scholar] [CrossRef]
- Chada, R.R.; Enumula, S.S.; Reddy, S.; Gudimella, M.D.; Rao Kamaraju, S.R.; Burri, D.R. Direct and Facile Synthesis of LaPO4 Containing SBA-15 Catalyst for Selective O-Methylation of Phenol to Anisole in Continuous Process. Microporous Mesoporous Mater. 2020, 300, 110144. [Google Scholar] [CrossRef]
- Wu, B.; Sheng, Y.; Zhou, L.; Hong, R.; Zhang, L.; Ren, X.; Zou, X.; Shang, X.; Lu, X.; Wang, X. Efficient and Stable O-Methylation of Catechol with Dimethyl Carbonate over Aluminophosphate Catalysts. Catalysts 2023, 13, 150. [Google Scholar] [CrossRef]
- Hamza, A.; Nagaraju, N. Amorphous Metal-Aluminophosphate Catalysts for Aldol Condensation of n-Heptanal and Benzaldehyde to Jasminaldehyde. Chin. J. Catal. 2015, 36, 209–215. [Google Scholar] [CrossRef]
- Harish, N.; Kathyayini, N.; Baby, B.; Nagaraju, N. Investigation of Active Sites Using Solid State 27Al and 31P MAS NMR in Ceramic Amorphous Aluminophosphate Materials Prepared from Different Potassium Salts of Phosphate for the Synthesis of Diphenyl Urea Derivatives. J. Phys. Chem. Solids 2021, 154, 110087. [Google Scholar] [CrossRef]
- Park, J.; Lee, M.; Feng, D.; Huang, Z.; Hinckley, A.C.; Yakovenko, A.; Zou, X.; Cui, Y.; Bao, Z. Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. J. Am. Chem. Soc. 2018, 140, 10315–10323. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.; Jia, M.; Zou, X.; Zhu, X.; Zhang, W.; Jiang, D. Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol. J. Phys. Chem. B 2006, 110, 16953–16960. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, A.; Zhang, Y.; Zhang, C.; Chen, Z.; Liu, L.; Zhou, Y.; Wei, Q.; Tao, X. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over NiMo Supported on Ga-Modified Y Zeolites Catalysts. J. Catal. 2019, 374, 345–359. [Google Scholar] [CrossRef]
- Baylon, R.A.L.; Sun, J.; Kovarik, L.; Engelhard, M.; Li, H.; Winkelman, A.D.; Wang, Y. Structural Identification of ZnxZryOz Catalysts for Cascade Aldolization and Self-Deoxygenation Reactions. Appl. Catal. B Environ. 2018, 234, 337–346. [Google Scholar] [CrossRef]
- Nikitina, M.A.; Ivanova, I.I. Conversion of 2,3-Butanediol over Phosphate Catalysts. ChemCatChem 2016, 8, 1346–1353. [Google Scholar] [CrossRef]
- Harish, N.; Kathyayini, N.; Nagaraju, N. Studies on the Catalytic Activity of Mesoporous Alumina-Aluminophosphate (Al2O3–AlPO4) Materials in the Synthesis of N,N′-Diphenyl Urea. React. Kinet. Mech. Catal. 2018, 125, 937–949. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Ruaux, V.; Massin, L.; Lorentz, C.; Afanasiev, P.; Maugé, F.; Bellière-Baca, V.; Rey, P.; Millet, J.M.M. Synthesis, Characterization and Study of Lanthanum Phosphates as Light Alcohols Dehydration Catalysts. Appl. Catal. B Environ. 2015, 166–167, 432–444. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, W.; Cai, H.; Lv, J.; Liu, J. Amorphous Magnesium Substituted Mesoporous Aluminophosphate: An Acid-Base Sites Synergistic Catalysis for Transesterification of Diethyl Carbonate and Dimethyl Carbonate in Fixed-Bed Reactor. Microporous Mesoporous Mater. 2020, 292, 109757. [Google Scholar] [CrossRef]
- Santos-Vieira, I.C.M.S.; Mendes, R.F.; Almeida Paz, F.A.; Rocha, J.; Simões, M.M.Q. Acetalization of Glycerol with Acetone over UAV-59 Catalyst: Mild Reaction Conditions and Enhanced Selectivity. Catal. Today 2023, 424, 114296. [Google Scholar] [CrossRef]
- Yang, M.; Guo, H.; Li, Y.; Wang, W.; Zhou, L. Study on Methane Conversion to Syngas over Nano Pt-CeO2-ZrO2/MgO Catalysts: Structure and Catalytic Behavior of Catalysts Prepared by Using Ion Exchange Resin Method. J. Environ. Sci. 2011, 23, S53–S58. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Chen, Y.; Walter, E.D.; Washton, N.M.; Mei, D.; Varga, T.; Wang, Y.; Szanyi, J.; Wang, Y.; Peden, C.H.F.; et al. Unraveling the Mysterious Failure of Cu/SAPO-34 Selective Catalytic Reduction Catalysts. Nat. Commun. 2019, 10, 1137. [Google Scholar] [CrossRef]
- Pavel, O.D.; Tichit, D.; Marcu, I.-C. Acido-Basic and Catalytic Properties of Transition-Metal Containing Mg–Al Hydrotalcites and Their Corresponding Mixed Oxides. Appl. Clay Sci. 2012, 61, 52–58. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, G.; Zhang, Q. Preparation of the WOX/MCM-41 Solid Acid Catalyst and the Catalytic Performance for Solketal Synthesis. ACS Omega 2021, 6, 3875–3883. [Google Scholar] [CrossRef] [PubMed]
Catalysts | SBET (m2g−1) | VP (cm3g−1) | Da (nm) |
---|---|---|---|
0.9P-Al-O | 102 | 0.29 | 11.2 |
0.95P-Al-O | 75 | 0.23 | 12.5 |
1.0P-Al-O | 153 | 0.49 | 12.7 |
1.05P-Al-O | 140 | 0.52 | 14.9 |
1.1P-Al-O | 173 | 0.59 | 13.7 |
1.15P-Al-O | 139 | 0.65 | 18.7 |
1.2P-Al-O | 118 | 0.56 | 18.8 |
Catalysts | Relative Amount of NH3 Desorption | Relative Amount of CO2 Desorption |
---|---|---|
0.9P-Al-O | 100 | 100 |
0.95P-Al-O | 101 | 104 |
1.0P-Al-O | 156 | 81 |
1.05P-Al-O | 252 | 80 |
1.1P-Al-O | 268 | 64 |
1.15P-Al-O | 189 | 77 |
1.2P-Al-O | 188 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhao, J.; Zhang, Y.; Zou, X.; Shang, X.; Wang, X. Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst. Catalysts 2025, 15, 843. https://doi.org/10.3390/catal15090843
Wu J, Zhao J, Zhang Y, Zou X, Shang X, Wang X. Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst. Catalysts. 2025; 15(9):843. https://doi.org/10.3390/catal15090843
Chicago/Turabian StyleWu, Jingchen, Jingwen Zhao, Yixiao Zhang, Xiujing Zou, Xingfu Shang, and Xueguang Wang. 2025. "Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst" Catalysts 15, no. 9: 843. https://doi.org/10.3390/catal15090843
APA StyleWu, J., Zhao, J., Zhang, Y., Zou, X., Shang, X., & Wang, X. (2025). Efficient and Stable Synthesis of Solketal on Mesoporous Aluminum Phosphate Catalyst. Catalysts, 15(9), 843. https://doi.org/10.3390/catal15090843