Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde
Abstract
1. Introduction
2. Results and Discussion
3. Experiment
3.1. Materials
3.2. Synthesis of ZIS Photocatalyst
3.3. Synthesis of the Heterogeneous Ni3S2/ZIS
3.4. Characterization
3.5. Photoelectrochemical Testing
3.6. Photocatalytic Hydrogen Production Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Fu, H.; Yang, X.; Xiong, S.; Wang, S.; Gu, F.; An, X. Efficient TaON/CdZnS nanorods with enhanced interfacial charge transfer for visible-light-driven hydrogen evolution. Powder Technol. 2024, 437, 119540. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Xu, Y.; Du, C.; Zhou, C.; Yang, S. Ternary noble-metal-free heterostructured NiS-CuS-C3N4 with near-infrared response for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 4084–4094. [Google Scholar] [CrossRef]
- Arunachalam, P.; Nagai, K.; Amer, M.S.; Ghanem, M.A.; Ramalingam, R.J.; Al-Mayouf, A.M. Recent developments in the use of heterogeneous semiconductor photocatalyst based materials for a visible-light-induced water-splitting system—A brief review. Catalysts 2021, 11, 160. [Google Scholar] [CrossRef]
- Bessegato, G.G.; Guaraldo, T.T.; Brito, J.F.D.; Brugnera, M.F.; Zanoni, M.V.B. Achievements and Trends in Photoelectrocatalysis: From Environmental to Energy Applications. Electrocatalysis 2015, 6, 415–441. [Google Scholar] [CrossRef]
- Rej, S.; Hejazi, S.M.H.; Badura, Z.; Zoppellaro, G.; Kalytchuk, S.; Kment, Š.; Fornasiero, P.; Naldoni, A. Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H2 Production in 2D TiO2-Bronze Nanosheets. ACS Sustain. Chem. Eng. 2022, 10, 17286–17296. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shen, C.; Xu, Y.; Zhong, Y.; Wang, C.; Yang, S.; Wang, G. An improved metal-to-ligand charge transfer mechanism for photocatalytic hydrogen evolution. ChemSusChem 2019, 12, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, C.; Zhao, Q.; Zhou, C.; Yang, S. Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. J. Taiwan Inst. Chem. E. 2019, 109, 182–189. [Google Scholar] [CrossRef]
- Zaman, N.; Iqbal, N.; Noor, T. Advances and challenges of MOF derived carbon-based electrocatalysts and photocatalyst for water splitting: A review. Arab. J. Chem. 2022, 15, 103906. [Google Scholar] [CrossRef]
- Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769. [Google Scholar] [CrossRef]
- Lv, H.; Wu, H.; Zheng, J.; Kong, Y.; Xing, X.; Wang, G.; Liu, Y. Engineering of direct Z-scheme ZnIn2S4/NiWO4 heterojunction with boosted photocatalytic hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2023, 665, 131384. [Google Scholar] [CrossRef]
- Liu, Y.; Du, C.; Zhou, C.; Yang, S. One-step synthesis of hierarchical AuNPs/Cd0.5Zn0.5S nanoarchitectures and their application as an efficient photocatalyst for hydrogen production. J. Ind. Eng. Chem. 2019, 72, 338–345. [Google Scholar] [CrossRef]
- Xu, Y.; Du, C.; Steinkruger, J.D.; Zhou, C.; Yang, S. Microwave-assisted synthesis of AuNPs/CdS composite nanorods for enhanced photocatalytic hydrogen evolution. J. Mater. Sci. 2019, 54, 6930–6942. [Google Scholar] [CrossRef]
- Ling, G.Z.S.; Ng, S.-F.; Ong, W.-J. Tailor-engineered 2D cocatalysts: Harnessing electron-hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv. Funct. Mater. 2022, 32, 2111875. [Google Scholar] [CrossRef]
- Kampouri, S.; Stylianou, K.C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal. 2019, 9, 4247–4270. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Nian, P.; Ma, H.; Hou, J.; Zhang, Y. Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr(VI)-polluted water. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132775. [Google Scholar] [CrossRef]
- Ji, C.; Du, C.; Steinkruger, J.D.; Zhou, C.; Yang, S. In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. Mater. Lett. 2019, 240, 128–131. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Q.; Du, C.; Sun, S.; Steinkruger, J.D.; Zhou, C.; Yang, S. Synergistic effect of dual particle-size AuNPs on TiO2 for efficient photocatalytic hydrogen evolution. Nanomaterials 2019, 9, 499. [Google Scholar] [CrossRef]
- Shang, W.; Li, Y.; Huang, H.; Lai, F.; Roeffaers, M.B.J.; Weng, B. Synergistic redox reaction for value-added organic transformation via dual-functional photocatalytic systems. ACS Catal. 2021, 11, 4613–4632. [Google Scholar] [CrossRef]
- Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R.S.; Wilbraham, L.; Moniz, S.J.A.; Godin, R.; Zwijnenburg, M.A.; Durrant, J.R.; Cooper, A.I.; et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746–760. [Google Scholar] [CrossRef]
- Tang, D.; Lu, G.; Shen, Z.; Hu, Y.; Yao, L.; Li, B.; Zhao, G.; Peng, B.; Huang, X. A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. J. Energy Chem. 2023, 77, 80–118. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524. [Google Scholar] [CrossRef]
- Tayyab, M.; Liu, Y.; Liu, Z.; Xu, Z.; Yue, W.; Zhou, L.; Lei, J.; Zhang, J. A new breakthrough in photocatalytic hydrogen evolution by amorphous and chalcogenide enriched cocatalysts. Chem. Eng. J. 2023, 455, 140601. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Ye, H.; Liang, P.Y.; Han, P.C.; Sun, Y. Zinc indium sulfide-based photocatalysts for selective organic transformations. ChemCatChem 2024, 16, e202301553. [Google Scholar] [CrossRef]
- Gupta, S.; Fernandes, R.; Patel, R.; Spreitzer, M.; Patel, N. A review of cobalt-based catalysts for sustainable energy and environmental applications. Appl. Catal. A Gen. 2023, 661, 119254. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Mamba, B.B. TiO2-based photocatalysis: Toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites. Crit. Rev. Solid State Mater. Sci. 2017, 42, 295–346. [Google Scholar] [CrossRef]
- Li, J.L.; Li, Z.X.; Wei, Y.; Wang, J.; Huang, W.Y.; Zhang, J.L.; Yang, K.; Lu, K.Q. ZnIn2S4 Nanosheet Arrays on Co9S8 Hollow Nanotubes for the Photoredox Coupling of Benzyl Alcohol Oxidation with H2 Evolution. ACS Appl. Nano Mater. 2024, 7, 20849–20857. [Google Scholar] [CrossRef]
- Zhu, T.; Ye, X.; Zhang, Q.; Hui, Z.; Wang, X.; Chen, S. Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid. J. Hazard. Mater. 2019, 367, 277–285. [Google Scholar] [CrossRef]
- Ning, X.; Meng, S.; Fu, X.; Ye, X.; Chen, S. Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chem. 2016, 18, 3628–3639. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Yin, S.-N.; Feng, L.; Zang, Y.; Xue, H. In situ construction of fibrous AgNPs/g-C3N4 aerogel toward light-driven COx-free methanol dehydrogenation at room temperature. Chem. Eng. J. 2018, 334, 2401–2407. [Google Scholar] [CrossRef]
- Ji, C.; Yin, S.-N.; Sun, S.; Yang, S. An in situ mediator-free route to fabricate Cu2O/g-C3N4 type-II heterojunctions for enhanced visible-light photocatalytic H2 generation. Appl. Surf. Sci. 2018, 434, 1224–1231. [Google Scholar] [CrossRef]
- Chachvalvutikul, A.; Luangwanta, T.; Pattisson, S.; Hutchings, G.J.; Kaowphong, S. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Appl. Surf. Sci. 2021, 544, 148885. [Google Scholar] [CrossRef]
- Hassan, J.Z.; Raza, A.; Qumar, U.; Li, G. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustain. Mater. Techno. 2022, 33, e00478. [Google Scholar] [CrossRef]
- Zhou, M.; Li, J.; Ye, Z.; Ma, C.; Wang, H.; Huo, P.; Shi, W.; Yan, Y. Transfer charge and energy of Ag@CdSe QDs-rGO core-shell plasmonic photocatalyst for enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2015, 7, 28231–28243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, S.; Yin, S.-N.; Xue, H. Over two-orders of magnitude enhancement of the photocatalytic hydrogen evolution activity of carbon nitride via mediator-free decoration with gold-organic microspheres. Chem. Commun. 2017, 53, 11814–11817. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kumar, A.; Zheng, G.; Mashifana, T.; Dhiman, P.; Sharma, G.; Stadler, F.J. Current scenario in ternary metal indium sulfides-based heterojunctions for photocatalytic energy and environmental applications: A Review. Mater. Today Commun. 2023, 36, 106741. [Google Scholar] [CrossRef]
- Wang, X.; Sun, K.; Gu, S.; Zhang, Y.; Wu, D.; Zhou, X.; Gao, K.; Din, Y. Construction of a novel electron transfer pathway by modifying ZnIn2S4 with α-MnO2 and Ag for promoting solar H2 generation. Appl. Surf. Sci. 2021, 549, 149341. [Google Scholar] [CrossRef]
- Zheng, X.; Song, Y.; Liu, Y.; Yang, Y.; Wu, D.; Yang, Y.; Feng, S.; Li, J.; Liu, W.; Shen, Y.; et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112. [Google Scholar] [CrossRef]
- Guan, Z.; Pan, J.; Li, Q.; Li, G.; Yang, J. Boosting visible-light photocatalytic hydrogen evolution with an efficient CuInS2/ZnIn2S4 2D/2D heterojunction. ACS Sustain. Chem. Eng. 2019, 7, 7736–7742. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Si, Y.; Li, B.; Deng, F.; Yang, L.; Liu, X.; Dai, W.; Luo, S. Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 2021, 15, 15238–15248. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Song, Y.; Gao, M.; Zhang, W. Synergistic coupling of photocatalytic H2 evolution and selective oxidation of benzyl alcohol over ZnIn2S4/Ni in aqueous solution. Appl. Catal. A Gen. 2024, 683, 119855. [Google Scholar] [CrossRef]
- Chong, W.-K.; Ng, B.-J.; Tan, L.-L.; Chai, S.-P. A compendium of all-in-one solar-driven water splitting using ZnIn2S4-based photocatalysts: Guiding the path from the past to the limitless future. Chem. Soc. Rev. 2024, 53, 10080–10146. [Google Scholar] [CrossRef]
- Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D.-E.; Sun, Y. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Pang, Q.; Zhang, J.Z. Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chem. Eng. J. 2020, 401, 126045. [Google Scholar] [CrossRef]
- Zhao, Y.; You, J.; Wang, L.; Bao, W.; Yao, R. Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 39146–39182. [Google Scholar] [CrossRef]
- Tan, M.; Ma, Y.; Yu, C.; Luan, Q.; Li, J.; Liu, C.; Dong, W.; Su, Y.; Qiao, L.; Gao, L.; et al. Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 2022, 32, 2111740. [Google Scholar] [CrossRef]
- Li, H.; Chong, B.; Xu, B.; Wells, N.; Yan, X.; Yang, G. Nanoconfinement-induced conversion of water chemical adsorption properties in nanoporous photocatalysts to improve photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 14076–14086. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 277, 119254. [Google Scholar] [CrossRef]
- Cui, Y.; Pan, Y.-X.; Qin, H.; Cong, H.-P.; Yu, S.-H. A noble-metal-free CdS/Ni3S2@C nanocomposite for efficient visible-light-driven photocatalysis. Small Methods 2018, 2, 1800029. [Google Scholar] [CrossRef]
- Su, H.; Lou, H.; Zhao, Z.; Zhou, L.; Pang, Y.; Xie, H.; Rao, C.; Yang, D.; Qiu, X. In-situ Mo doped H2 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770. [Google Scholar] [CrossRef]
- Chaudhari, N.S.; Bhirud, A.P.; Sonawane, R.S.; Nikam, L.K.; Warule, S.S.; Raneb, V.H.; Kale, B.B. Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst. Green Chem. 2011, 13, 2500–2506. [Google Scholar] [CrossRef]
- Zhang, J.; Du, C.; Zhou, C.; Yang, S. Highly efficient splitting of benzyl alcohol for the production of hydrogen and benzaldehyde using synergistic CuNi/CdS photocatalysts. J. Ind. Eng. Chem. 2023, 122, 292–302. [Google Scholar] [CrossRef]
- Xing, F.; Zeng, R.; Cheng, C.; Liu, Q.; Huang, C. POM-incorporated ZnIn2S4 Z-scheme dual-functional photocatalysts for cooperative benzyl alcohol oxidation and H2 evolution in aqueous solution. Appl. Catal. B Environ. 2022, 306, 121087. [Google Scholar] [CrossRef]
- Cao, X.; Han, T.; Peng, Q.; Chen, C.; Li, Y. Modifications of heterogeneous photocatalysts for hydrocarbon C-H bonds activation and selective conversion. Chem. Commun. 2020, 56, 13918–13932. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhang, H.; Xu, J.; Zhou, C.; Qu, G.; Yang, S. Significant augmentation of hydrogen and benzaldehyde production through mediator-free in-situ synthesis of CuNi/CN photocatalysts for benzyl alcohol splitting. Fuel 2024, 370, 131827. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Wei, Y.; Xie, L.; Chen, H.-Q.; Wang, J.; Yang, K.; Zou, L.-X.; Deng, T.; Lu, K.-Q. Decorating CdS with cobaltous hydroxide and graphene dual cocatalyst for photocatalytic hydrogen production coupled selective benzyl alcohol oxidation. Mol. Catal. 2024, 553, 113738. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, X.; Zhang, Z.; Ye, X.; Zhang, T.; Zeng, W.; Guan, X.; Guo, L. Photocatalytic hydrogen production coupled with selective benzyl alcohol oxidation via WOx/CdS S-scheme heterojunction. Int. J. Hydrogen Energy 2024, 74, 31–38. [Google Scholar] [CrossRef]
- Guo, P.; Liu, X.; You, C.; Zhang, B.; Zhang, P.; Xiong, Z.; Li, H.; Zhang, H.; Wang, R.; Zhang, Z.; et al. Controllable construction of defect-mediated Z-scheme heterojunction for dual-functional cooperative photocatalysis of benzyl alcohol conversion and hydrogen evolution. App. Catal. B Environ. 2025, 366, 125011. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Y.; Wang, J.; Wu, Y.-H.; Weng, Z.; Huang, W.; Yang, K.; Zhang, J.-L.; Li, Q.; Lu, K.-Q.; et al. Rationally designed dual cocatalysts on ZnIn2S4 nanoflowers for photoredox coupling of benzyl alcohol oxidation with H2 evolution. J. Mater. Chem. A 2024, 12, 18986–18992. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Fang, M.; Xia, X.; Liu, Y. Efficient spatial separation of charge carriers over CoS1+x cocatalyst modified MIL-88B(Fe)/ZnIn2S4 S-scheme heterojunctions for photoredox dual reaction and insight into the charge-transfer mechanism. Sep. Purif. Technol. 2023, 305, 122509. [Google Scholar] [CrossRef]
- Sehrawat, P.; Mehta, S.K.; Kansal, S.K. Synergistic enhancement of photocatalytic activity in ZnS/P-doped-MoS2 composite for hydrogen generation simultaneously oxidation of benzyl alcohol through water splitting and dye degradation. Int. J. Hydrogen Energy 2024, 80, 573–585. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Wang, S.; Zhu, X.; Chen, Y.; Cai, Z.; Xu, L.; Zhao, Y. Electron energy band and function-oriented micro-nano structures integrated reactors for boosting photocatalytic hydrogen production coupled with selective benzyl alcohol oxidation. J. Photoch. Photobio. A 2025, 116652. [Google Scholar] [CrossRef]
Entry | Quenchers | Quenching Group | H2 (mmol g–1) | BAD (mmol g–1) |
---|---|---|---|---|
1 | none | none | 17.368 | 16.852 |
2 | TEOA | holes | 16.906 | 7.936 |
3 | AgNO3 | electrons | 0 | 16.503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, C.; Yang, S. Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde. Catalysts 2025, 15, 830. https://doi.org/10.3390/catal15090830
Wang H, Zhou C, Yang S. Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde. Catalysts. 2025; 15(9):830. https://doi.org/10.3390/catal15090830
Chicago/Turabian StyleWang, Haibo, Chen Zhou, and Shengyang Yang. 2025. "Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde" Catalysts 15, no. 9: 830. https://doi.org/10.3390/catal15090830
APA StyleWang, H., Zhou, C., & Yang, S. (2025). Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde. Catalysts, 15(9), 830. https://doi.org/10.3390/catal15090830