Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes
Abstract
1. Introduction
2. Preparation Methods and Size Scales for Co-Based Catalysts
2.1. Impregnation Method
2.2. Precipitation Method
2.3. Solvothermal Method
2.4. Sol–Gel Method
2.5. Pyrolysis Method
3. Hydrogenation Properties of Co-Based Catalysts for UAL
3.1. Metal Catalysts
3.1.1. Monometallic Co-Based Catalysts
3.1.2. Bimetallic Co-Based Catalysts
3.2. Co-Based Oxide Catalysts
3.2.1. Co Oxide Catalysts
3.2.2. Co-Based Composite Oxide Catalysts
4. Reaction Mechanisms of UAL over Co Active Sites
4.1. Hydrogen Dissociation Hydrogenation
4.2. Catalytic Transfer Hydrogenation
4.3. Solvent Effects and Side Reactions
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zahid, M.; Ismail, A.; Khan, M.F.; Ali, N.; Bakhtiar, S.H.; El Jery, A.; Al Alwan, B.; Ullah, R.; Raziq, F.; He, W.; et al. Understanding the working principle of sustainable catalytic materials for selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes. Coord. Chem. Rev. 2025, 525, 216295. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Y.; Shen, T.; Yin, P.; Wang, L.; Ren, Z.; Zheng, L.; Wang, B.; Yan, H.; Wei, M. Highly Selective Hydrogenation of Unsaturated Aldehydes in Aqueous Phase. ACS Appl. Mater. Interfaces 2024, 16, 13685–13696. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, T.; Liu, Y.-Y.; Sun, Z.; Wang, Y.; Wang, A. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol over SnO-MgO composite catalysts. Chem. Eng. J. 2025, 512, 162483. [Google Scholar] [CrossRef]
- Ma, M.; Li, L.; Li, X.; Wang, Q.; Huang, T.; Geng, Z.; Tian, G.; Li, G. Stabilization of unique Zr>4+ species in NiFe2O4 nanocrystals for unprecedented catalytic transfer hydrogenation reaction. Appl. Catal. B-Environ. Energy 2024, 350, 123905. [Google Scholar] [CrossRef]
- Zhong, L.; Liao, X.; Huang, H.; Cui, H.; Huang, J.; Luo, H.a.; Pei, Y.; Lv, Y.; Liu, P. B, N Codoped Defective Reduced Graphene Oxide as a Highly Efficient Frustrated Lewis Pairs Catalyst for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols. J. Am. Chem. Soc. 2025, 147, 3840–3854. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; An, Y.; Zhang, J.; Park, G.-S.; Zhao, L.; Oh, R.; Huang, X.; Dong, J.; Liu, L. Boosting selective hydrogenation of α,β-unsaturated aldehydes through constructing independent Pt and Fe active sites on support. Chem. Eng. J. 2024, 484, 149670. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Z.; Liu, W.; Li, X.; Su, S.; Peng, H.; Fang, Y.; Dong, J.; Sun, Q. Regioselective Upgrading of Furfural into 2-Methyl Furan over Cobalt Confined in Microporous Carbon Spheres. ACS Catal. 2025, 15, 6199–6208. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Liu, Q. Cobalt/Lewis acid cooperative catalysis for reductive etherification of ketones and aldehydes with alcohols. Chem Catal. 2022, 2, 883–897. [Google Scholar] [CrossRef]
- Lashdaf, M.; Tiitta, M.; Venäläinen, T.; Österholm, H.; Krause, A.O.I. Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Catal. Lett. 2004, 94, 7–14. [Google Scholar] [CrossRef]
- Zhang, X.B.; Zhang, Y.J.; Chen, F.; Xiang, Y.Z.; Zhang, B.; Xu, L.Y.; Zhang, T.R. Efficient selective hydrogenation of cinnamaldehyde over zeolite supported cobalt catalysts in water. React. Kinet. Mech. Catal. 2015, 115, 283–292. [Google Scholar] [CrossRef]
- Gong, W.; Ma, J.; Chen, G.; Dai, Y.; Long, R.; Zhao, H.; Xiong, Y. Unlocking the catalytic potential of heterogeneous nonprecious metals for selective hydrogenation reactions. Chem. Soc. Rev. 2025, 54, 960–982. [Google Scholar] [CrossRef]
- Aireddy, D.R.; Ding, K. Heterolytic Dissociation of H2 in Heterogeneous Catalysis. ACS Catal. 2022, 12, 4707–4723. [Google Scholar] [CrossRef]
- Yang, B.; Gong, X.-Q.; Wang, H.-F.; Cao, X.-M.; Rooney, J.J.; Hu, P. Evidence To Challenge the Universality of the Horiuti–Polanyi Mechanism for Hydrogenation in Heterogeneous Catalysis: Origin and Trend of the Preference of a Non-Horiuti–Polanyi Mechanism. J. Am. Chem. Soc. 2013, 135, 15244–15250. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Wang, Y.; Gao, S.; Fu, Q.; Wang, X.; Qin, R.; Zheng, N. Ligand Modification-Induced Electronic Effects and Synergistic Protic Solvent Effects Promote C=O Bond Hydrogenation. ACS Catal. 2024, 14, 11468–11476. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Wu, J.; Zhang, L.; Cao, D.; Cheng, D. Constructing a Highly Active Pd Atomically Dispersed Catalyst for Cinnamaldehyde Hydrogenation: Synergistic Catalysis between Pd–N3 Single Atoms and Fully Exposed Pd Clusters. ACS Catal. 2024, 14, 2369–2379. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, Z.; Li, W.; Wang, Y.; Zou, Y.; Zhang, M.; Gong, Z.; Cui, Y.; Qu, Y. In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation. Nano Res. 2022, 16, 6507–6511. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, R.; Wang, L.; Zhou, S. Enhanced Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Silica-Coated Pt–CoxOy Hybrid Nanoparticles. ACS Appl. Mater. Interfaces 2023, 16, 924–932. [Google Scholar] [CrossRef]
- Wang, S.; Wu, B.; Zhang, Q.; Li, Y.; Zhu, L.; Yu, H.; Yin, H. Design of Pt@Sn core–shell nanocatalysts for highly selective hydrogenation of cinnamaldehyde to prepare cinnamyl alcohol. Chem. Eng. J. 2024, 488, 151019. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Q.; Zhang, Y.; Wei, Y.; Hou, X.; Huang, R.; Deng, D. Accelerating Semihydrogenation of Cinnamaldehyde by Water over a Au/α-MoC Catalyst. ACS Catal. 2024, 14, 10113–10121. [Google Scholar] [CrossRef]
- Farrar-Tobar, R.A.; Dell’Acqua, A.; Tin, S.; de Vries, J.G. Metal-catalysed selective transfer hydrogenation of α,β-unsaturated carbonyl compounds to allylic alcohols. Green Chem. 2020, 22, 3323–3357. [Google Scholar] [CrossRef]
- Zhu, Y.; Chuah, G.; Jaenicke, S. Selective Meerwein–Ponndorf–Verley reduction of α,β-unsaturated aldehydes over Zr-zeolite beta. J. Catal. 2006, 241, 25–33. [Google Scholar] [CrossRef]
- Plessers, E.; Fu, G.; Tan, C.; De Vos, D.; Roeffaers, M. Zr-Based MOF-808 as Meerwein–Ponndorf–Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts 2016, 6, 104. [Google Scholar] [CrossRef]
- Liu, S.H.; Jaenicke, S.; Chuah, G.K. Hydrous Zirconia as a Selective Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cinnamaldehyde. J. Catal. 2002, 206, 321–330. [Google Scholar] [CrossRef]
- Fan, Y.; Li, S.; Wang, Y.; Zou, X.; Zhuang, C. Size-Dependent Fe-Based Catalysts for the Catalytic Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Inorg. Chem. 2025, 64, 3101–3110. [Google Scholar] [CrossRef]
- Sheng, Q.; Wang, Y.; Zhang, P.; Jiang, Y.; Zhang, J.; Liu, Q.; Chang, Q.; Yao, Y.; Liao, X.; Li, Z.; et al. Highly dispersed Ni on defective carbon with metal-support interaction for efficient and selective cinnamaldehyde hydrogenation. Appl. Surf. Sci. 2024, 666, 160369. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, B.; Shi, S.; Bo, Z.; Yuan, M.; Xu, Y.; Xiao, W.; Wang, S.; Chen, C. Targeted electron transfer effect of enzyme-like Co-NX catalysts for enhanced C = O hydrogenation. Chem. Eng. J. 2024, 488, 151199. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Jia, Z.; Han, Q.; Yu, S.; Liu, S.; Li, L.; Wu, Q.; Yu, H.; Liu, Y.; et al. Bi-functional active sites Cu/MgO-La2O3 catalysts the selective hydrogenation of furfural to furfuryl alcohol. Chem. Eng. J. 2024, 500, 157400. [Google Scholar] [CrossRef]
- Ngan, H.T.; Sautet, P. Tuning the Hydrogenation Selectivity of an Unsaturated Aldehyde via Single-Atom Alloy Catalysts. J. Am. Chem. Soc. 2024, 146, 2556–2567. [Google Scholar] [CrossRef]
- Wang, X.; Liang, X.; Geng, P.; Li, Q. Recent Advances in Selective Hydrogenation of Cinnamaldehyde over Supported Metal-Based Catalysts. ACS Catal. 2020, 10, 2395–2412. [Google Scholar] [CrossRef]
- Shi, H.; Su, T.; Qin, Z.; Ji, H. Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde. Front. Chem. Sci. Eng. 2024, 18, 64. [Google Scholar] [CrossRef]
- Lan, X.; Wang, T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review. ACS Catal. 2020, 10, 2764–2790. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, Y.; Wei, M. Recent Advances on Heterogeneous Non-noble Metal Catalysts toward Selective Hydrogenation Reactions. ACS Catal. 2023, 13, 8902–8924. [Google Scholar] [CrossRef]
- Wang, G.H.; Deng, X.; Gu, D.; Chen, K.; Tüysüz, H.; Spliethoff, B.; Bongard, H.J.; Weidenthaler, C.; Schmidt, W.; Schüth, F. Co3O4 Nanoparticles Supported on Mesoporous Carbon for Selective Transfer Hydrogenation of α,β-Unsaturated Aldehydes. Angew. Chem. Int. Ed. 2016, 55, 11101–11105. [Google Scholar] [CrossRef]
- Zhou, S.; Qi, H. A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co3O4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation. Nanoscale 2020, 12, 17373–17384. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Liao, X.; Ren, Y.; Zhou, Y.; Xiao, J.; Deng, R.; Lv, Y.; Liu, H.; Liu, P.; Yang, H. Highly selective transfer hydrogenation of α,β-unsaturated aldehydes by frustrated Lewis pairs (FLPs) on oxygen-defect-rich Co3O4@NC. J. Catal. 2023, 428, 115126. [Google Scholar] [CrossRef]
- Krishnaveni, T.; Lakshmi, K.; Kaveri, M.V.; Kadirvelu, K. Chemoselective transfer hydrogenation of aromatic and heterocyclic aldehydes by green chemically prepared cobalt oxide nanoparticles. Mol. Catal. 2020, 496, 111180. [Google Scholar] [CrossRef]
- Gong, W.B.; Han, M.M.; Chen, C.; Lin, Y.; Wang, G.H.; Zhang, H.M.; Zhao, H.J. CoOX@Co Nanoparticle-based Catalyst for Efficient Selective Transfer Hydrogenation of α,β-Unsaturated Aldehydes. ChemCatChem 2020, 12, 1019–1024. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Liu, F.; Wang, Y.; Lan, X.; Wang, S.; Ali, B.; Wang, T. Transfer Hydrogenation of Cinnamaldehyde Catalyzed by Al2O3 Using Ethanol as a Solvent and Hydrogen Donor. ACS Sustain. Chem. Eng. 2020, 8, 8195–8205. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.; Han, W.; Luo, J.; Zhang, D.; Wang, Y.; Li, G. Crystalline/amorphous Al/Al2O3 core/shell nanospheres as efficient catalysts for the selective transfer hydrogenation of α,β-unsaturated aldehydes. Catal. Commun. 2018, 109, 50–54. [Google Scholar] [CrossRef]
- Gliński, M.; Ulkowska, U. Description of the structure-chemoselectivity relationship in the transfer hydrogenation of α,β-unsaturated aldehydes and ketones with alcohols in the presence of magnesium oxide. Appl. Catal. A-Gen. 2018, 554, 117–124. [Google Scholar] [CrossRef]
- Cui, H.; Zhong, L.; Lv, Y.; Hao, F.; Liu, P.; Xiong, W.; Xiong, S.; Liu, H.; Luo, H. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes. Fuel 2022, 317, 123551. [Google Scholar] [CrossRef]
- Zhong, L.; Liao, X.; Cui, H.; Luo, H.; Lv, Y.; Liu, P. Highly Efficient Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols over Defective MOF-808 with Constructed Frustrated Lewis Pairs. ACS Catal. 2024, 14, 857–873. [Google Scholar] [CrossRef]
- Zhong, L.; Liao, X.; Cui, H.; Luo, H.; Lv, Y.; Liu, P. Hydrogenation of α,β-unsaturated aldehydes over defective UiO-66 with Frustrated Lewis Pairs: Modulation of densities of defect sites via tailoring ligand-vacancies. Appl. Catal. B-Environ. Energy 2024, 342, 123421. [Google Scholar] [CrossRef]
- Singh, U.K.; Vannice, M.A. Liquid-Phase Citral Hydrogenation over SiO2-Supported Group VIII Metals. J. Catal. 2001, 199, 73–84. [Google Scholar] [CrossRef]
- Dong, C.; Li, Y.; Cheng, D.; Zhang, M.; Liu, J.; Wang, Y.-G.; Xiao, D.; Ma, D. Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catal. 2020, 10, 11011–11045. [Google Scholar] [CrossRef]
- Luneau, M.; Lim, J.S.; Patel, D.A.; Sykes, E.C.H.; Friend, C.M.; Sautet, P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem. Rev. 2020, 120, 12834–12872. [Google Scholar] [CrossRef]
- Yang, H.; Goldbach, A.; Wei, J.; Shen, W. Size-Dependent Hydrogenation Activity of Cobalt Nanoparticles. ACS Catal. 2024, 14, 7444–7455. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Galhardo, T.S.; Braga, A.H.; Arpini, B.H.; Szanyi, J.; Gonçalves, R.V.; Zornio, B.F.; Miranda, C.R.; Rossi, L.M. Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. J. Am. Chem. Soc. 2021, 143, 4268–4280. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, Z.; Dong, Q.; Kong, T.; Li, X.; Su, T.; Huang, B.; Lü, H.; Yang, K. Co@Pd–Co Core–Shell Nanoparticles as Catalysts for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. ACS Appl. Nano Mater. 2024, 7, 26825–26835. [Google Scholar] [CrossRef]
- Zhang, Z.; Chi, Y.; Guo, M.; Wang, L.; Zhang, X.; Li, G. Active cobalt nanoparticles confined in porous N-doped carbon shell for selective hydrogenation of nitroarenes. Mol. Catal. 2024, 555, 113911. [Google Scholar] [CrossRef]
- Din, I.U.; Shaharun, M.S.; Naeem, A.; Tasleem, S.; Ahmad, P. Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation. J. Energy Chem. 2019, 39, 68–76. [Google Scholar] [CrossRef]
- Neethu, P.P.; Venkatachalam, G.; Venkatesha, N.J.; Joseph, D.; Sakthivel, A. Cobalt-Based Hydrotalcite: A Potential Non-Noble Metal-Based Heterogeneous Catalyst for Selective Hydrogenation of Aromatic Aldehydes. Ind. Eng. Chem. Res. 2023, 62, 4976–4986. [Google Scholar] [CrossRef]
- Duan, L.; Huang, Z.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Zhang, N. CoWO4 nanoparticles with dual active sites for highly efficient ammonia synthesis. Nanoscale Horiz. 2025, 10, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, H.; Wang, Y.; Zhong, Z.; Zeng, Y.; Jin, Y.; Ye, D.; Chen, L. Cobalt catalyzed ethane dehydrogenation to ethylene with CO2: Relationships between cobalt species and reaction pathways. J. Colloid Interface Sci. 2024, 660, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, N.; Li, Y.; Hu, R. The catalytic hydrogenation of furfural to 2-methylfuran over the Mg-Al oxides supported Co-Ni bimetallic catalysts. Mol. Catal. 2022, 531, 112651. [Google Scholar] [CrossRef]
- Sadasivan, S.; Bellabarba, R.M.; Tooze, R.P. Size dependent reduction–oxidation–reduction behaviour of cobalt oxide nanocrystals. Nanoscale 2013, 5, 11139. [Google Scholar] [CrossRef]
- Uddin, M.K.; Baig, U. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. J. Clean. Prod. 2019, 211, 1141–1153. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Awad, R. Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method. J. Supercond. Nov. Magn 2019, 33, 1395–1404. [Google Scholar] [CrossRef]
- Alzaid, M.; Abu-Dief, A.M.; Hadia, N.M.A.; Ezzeldien, M.; Mohamed, W.S. Synthesis and characterization study of spinel Co3O4 nanoparticles synthesized via the facial co-precipitation route for optoelectronic application. Opt. Quantum Electron. 2024, 56, 1156. [Google Scholar] [CrossRef]
- Zhang, M.; Su, X.; Ma, L.; Khan, A.; Wang, L.; Wang, J.; Maloletnev, A.S.; Yang, C. Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes. J. Hazard. Mater. 2021, 403, 123870. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Benassi, E.; Li, X.; Liu, H.; Fang, W.; Tian, J.; Xia, C.; Huang, Z. NiCo/Al2O3 nanocatalysts for the synthesis of 5-amino-1-pentanol and 1,5-pentanediol from biomass-derived 2-hydroxytetrahydropyran. Green Chem. Eng. 2024, 5, 119–131. [Google Scholar] [CrossRef]
- Zhao, L.; An, H.; Zhao, X.; Wang, Y. Effect of Ni/Co mass ratio and NiO–Co3O4 loading on catalytic performance of NiO–Co3O4/Nb2O5–TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde. RSC Adv. 2021, 11, 1736–1742. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, H.; Qian, W.; Zhang, H.; Zhang, H.; Ying, W. Co- and Ni-promoted indium oxide for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2024, 14, 3771–3783. [Google Scholar] [CrossRef]
- Philippov, A.A.; Nasokhov, D.E.; Prosvirin, I.P.; Martyanov, O.N. Bimetallic Ni-Co catalyst for improving selectivity in transfer hydrogenation of phenolic compounds. Mol. Catal. 2024, 561, 114200. [Google Scholar] [CrossRef]
- Gupta, S.; Jain, P.; Jagadeesan, D.; Vinod, C.P. Morphology-Dependent Catalysis by Co3O4 Nanostructures in Atmospheric Pressure Carbon Dioxide Hydrogenation. J. Phys. Chem. C 2023, 127, 13055–13064. [Google Scholar] [CrossRef]
- Bustamante, T.M.; Fraga, M.A.; Fierro, J.L.G.; Campos, C.H.; Pecchi, G. Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catal. Today 2020, 356, 330–338. [Google Scholar] [CrossRef]
- Li, K.; Zhang, D.; Guo, H.; Yang, X.; Liang, C.; Wu, X.; Wang, Q.; Li, D.; Jia, L. Insight into crystal-plane-dependent of cobalt catalysts for ethylene glycol amination. Mol. Catal. 2025, 570, 114655. [Google Scholar] [CrossRef]
- Bankar, B.D.; Naikwadi, D.R.; Tayade, R.J.; Biradar, A.V. Direct hydrogenation of CO2 to formic acid using Ru supported Co3O4 oxide as an efficient heterogeneous catalyst. Mol. Catal. 2023, 535, 112875. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, T.; Zhao, J.; Xiao, J.; Zhou, W. Tuning selectivity of CO2 hydrogenation over Co catalysts by surface decoration of Sn. J. Catal. 2024, 429, 115242. [Google Scholar] [CrossRef]
- Yun, M.; Chen, T.; Zhao, N.; Li, Z. Enhanced fischer-tropsch synthesis performance on Co@SiO2 catalyst with core-shell structure. Mol. Catal. 2025, 572, 114749. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Wang, T.; Zhong, H.; Cheng, J.; Jin, F. In Situ Formed Metal Oxide/Metal Interface Enhanced C–C Coupling in CO2 Reduction into CH3COOH over Hexagonal Closed-Packed Cobalt. ACS Sustain. Chem. Eng. 2021, 9, 1203–1212. [Google Scholar] [CrossRef]
- Yu, H.; Liu, M.; Lu, Q.; Yu, Y.; Zhao, D.; Li, X. Mesoporous Metal Oxides. J. Phys. Chem. C 2024, 128, 19945–19961. [Google Scholar] [CrossRef]
- Israf Ud, D.; Nasir, Q.; Garba, M.D.; Alharthi, A.I.; Alotaibi, M.A.; Usman, M. A Review of Preparation Methods for Heterogeneous Catalysts. Mini-Rev. Org. Chem. 2022, 19, 92–110. [Google Scholar] [CrossRef]
- Guo, S.; Li, Z.; Yin, R.; Li, J.; Zeng, Z.; Hu, Z.; Luo, G.; Lv, J.; Huang, S.; Wang, Y.; et al. Oxygen Vacancy over CoMnOx Catalysts Boosts Selective Ethanol Production in the Higher Alcohol Synthesis from Syngas. ACS Catal. 2023, 13, 14404–14414. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Zhao, M.; Zhu, H.; Ma, X.; Li, Z.; Lu, W.; Chen, X.; Ying, L.; Lin, R.; et al. Oxygen-vacancy induced structural changes of Co species in CoAl2O4 spinels for CO2 hydrogenation. Appl. Catal. B-Environ. Energy 2024, 347, 123824. [Google Scholar] [CrossRef]
- Jia, S.; Yang, W.; Liu, H.; Chen, X.; Luo, J.; Liang, C. Regulation of sol-gel derived Cu-M/Al2O3 by metal additives for the selective catalytic transfer hydrogenation of furfural. Catal. Today 2025, 445, 115078. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, B.; Ni, C.; Qi, Y.; Zhang, Y.; Oturan, N.; Oturan, M.A. Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: Preparation, performance and mechanism. Appl. Catal. B Environ. 2019, 254, 391–402. [Google Scholar] [CrossRef]
- Mitran, G.; Nguyen, T.L.P.; Seo, D.-K. The influence of complexing agents on the cobalt-based catalysts properties and activities. J. Ind. Eng. Chem. 2022, 114, 446–455. [Google Scholar] [CrossRef]
- Miao, Y.; Gu, Y.; Zhou, J.; Chen, L.; Xie, Y. Cobalt-and-Nitrogen-Doped Carbon Nanoparticle Catalysts for Selective Hydrogen Transfer Reactions. ACS Appl. Nano Mater. 2024, 7, 10130–10136. [Google Scholar] [CrossRef]
- Qi, H.; Wang, X.; Lei, M.; Fan, W.; Huang, S.; Zhu, L.; Tang, H. Highly efficient catalytic hydrogenation of nitrobenzene on cobalt- immobilized nitrogen-doped carbon: A dual-sites synergistic effect between cobalt single atoms and cobalt nanoparticles. Chem. Eng. J. 2024, 500, 157057. [Google Scholar] [CrossRef]
- Xu, J.; Han, X.; Zhu, L.; Wang, W.; Ruan, L.; Yang, Z.; Ye, H.; Chen, B.H. Revealing the intrinsic relationship between nano/electronic structure of CuCo/NC (NC drived from ZIF-67) and their catalytic performance for furfural selective hydrogenation. J. Catal. 2025, 447, 116140. [Google Scholar] [CrossRef]
- Huai, M.; Li, X.; Zhang, Y.; Qin, X.; Zhang, Y.; Qin, X.; Liu, Y.; Liang, X.; Li, G.; Zhao, J. Boosting Furfural Hydrogenation Performance of Confined Co-Based Composites Derived From ZIF-67 via a Surfactant-Assisted Pyrolysis Strategy. ChemCatChem 2024, 17, e202401651. [Google Scholar] [CrossRef]
- Lin, Y.; Nie, R.; Li, Y.; Wu, X.; Yu, J.; Xie, S.; Shen, Y.; Mao, S.; Chen, Y.; Lu, D.; et al. Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Res. 2022, 15, 10006–10013. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Meng, J.; Yue, X.; Wang, Q.; Lu, J.; Wang, J.; Wang, X.; Zong, Y.; Jiang, X. Single-atom cobalt catalysts for chemoselective hydrogenation of nitroarenes to anilines. Chin. Chem. Lett. 2023, 34, 108745. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Banerjee, D.; Arockiam, P.B.; Junge, H.; Junge, K.; Pohl, M.-M.; Radnik, J.; Brückner, A.; Beller, M. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts. Green Chem. 2015, 17, 898–902. [Google Scholar] [CrossRef]
- Joseph Antony Raj, K.; Prakash, M.G.; Elangovan, T.; Viswanathan, B. Selective Hydrogenation of Cinnamaldehyde over Cobalt Supported on Alumina, Silica and Titania. Catal. Lett. 2011, 142, 87–94. [Google Scholar] [CrossRef]
- Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal. Sci. Technol. 2014, 4, 179–189. [Google Scholar] [CrossRef]
- Yi, D.; Min, Y.; Muzzi, B.; Marty, A.; Romana, I.; Fazzini, P.F.; Blon, T.; Viau, G.; Serp, P.; Soulantica, K. Epsilon Cobalt Nanoparticles as Highly Performant Catalysts in Cinnamaldehyde Selective Hydrogenation. ACS Appl. Nano Mater. 2022, 5, 5498–5507. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, X.; Sheng, Y.; Chen, X.; Wang, X.; Liang, C. Metal-organic framework-derived Co-C catalyst for the selective hydrogenation of cinnamaldehyde to cinnamic alcohol. Chin. J. Chem. Eng. 2023, 62, 46–56. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, C.; Zou, Z.; Hu, Z.; Fu, Z.; Li, W.; Pan, S.; Zhang, Y.; Zhang, H.; Yu, Z.; et al. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: Tunable activity and selectivity via N,P co-doping. J. Catal. 2023, 421, 65–76. [Google Scholar] [CrossRef]
- Pan, H.; Li, Z.; Ma, Q.; Zhang, Y.; Zheng, Y.; Gao, Y. Cobalt catalyst encapsulated by N-doped carbon for selective hydrogenation of aldehyde to alcohol. Mol. Catal. 2024, 553, 113752. [Google Scholar] [CrossRef]
- Yogita; Anjana, P.N.; Kumar, P.M.; Rao, K.T.V.; Subrahmanyam, C.; Lingaiah, N. Studies on Cobalt Nano Particles Supported on Nitrogen-Doped Carbon Catalysts for Selective Hydrogenation of Biomass Derived Furfural. Catal. Lett. 2025, 155, 137. [Google Scholar] [CrossRef]
- Mishra, J.; Mrugesh, P.; Subramanian, P.S.; Pratihar, S. Co–Ti Bimetallic Complex-Induced Phase Modulation of Co@Black TiO2 for Catalytic Hydrogenation of Cinnamaldehyde. Inorg. Chem. 2024, 63, 10423–10433. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Ren, J.; Hu, C.; Lv, B. Effect of boron nitride overlayers on Co@BNNSs/BN-Catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. J. Colloid Interface Sci. 2023, 630, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ma, Y.; Ruan, Y.; Zhang, W.; Zhang, S.; Xiong, W.; Tian, D.; Yang, S.; Fan, P.; Yang, Y.; et al. Water-promoted selective hydrogenation of cinnamaldehyde over hydrotalcite-derived Co catalysts. Mol. Catal. 2024, 559, 114096. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, G.; Wang, H.; Wang, Y.; Zhang, Y.; Fu, Y. Cobalt Nanocluster Supported on ZrREnOx for the Selective Hydrogenation of Biomass Derived Aromatic Aldehydes and Ketones in Water. ACS Catal. 2018, 8, 1268–1277. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Jia, Z.; ShitaoYu; Liu, S.; Li, L.; Wu, Q.; Yu, H.; Liu, Y.; Jiang, X.; et al. Selective hydrogenation of furfural to furfuryl alcohol over copper-cobalt bimetallic catalyst. Chem. Eng. J. 2024, 490, 151677. [Google Scholar] [CrossRef]
- Shi, H.; Li, Q.; Su, T.; Luo, X.; Qin, Z.; Ji, H. CoZnyB/Nb2CTx (MXene) for cinnamaldehyde hydrogenation to cinnamyl alcohol: Effects of Zn. Appl. Catal. A-Gen. 2025, 689, 120024. [Google Scholar] [CrossRef]
- Jia, A.; Yao, X.; Feng, L.; Ma, Z.; Li, F.; Wang, Y. Synthesis of Hierarchically Porous Amorphous Alloy Hollow Sphere with High Surface Area as Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation. Eur. J. Inorg. Chem. 2020, 2020, 1184–1191. [Google Scholar] [CrossRef]
- Shi, H.; Xu, Y.; Su, T.; Luo, X.; Xie, X.; Qin, Z.; Ji, H. Co–Fe catalyst supported on acidified bentonite for selective hydrogenation of cinnamaldehyde. Catal. Sci. Technol. 2024, 14, 1181–1190. [Google Scholar] [CrossRef]
- Lv, Y.; Han, M.; Gong, W.; Wang, D.; Chen, C.; Wang, G.; Zhang, H.; Zhao, H. Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. Angew. Chem. Int. Ed. 2020, 59, 23521–23526. [Google Scholar] [CrossRef]
- Cui, H.; Liu, S.; Lv, Y.; Wu, S.; Wang, L.; Hao, F.; Liu, P.; Xiong, W.; Luo, H. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core–shell MOFs nanoreactor: Identification of the formed metal–N as the structure of an active site. J. Catal. 2020, 381, 468–481. [Google Scholar] [CrossRef]
- Ramos, R.; Peixoto, A.F.; Arias-Serrano, B.I.; Soares, O.S.G.P.; Pereira, M.F.R.; Kubička, D.; Freire, C. Catalytic Transfer Hydrogenation of Furfural over Co3O4−Al2O3 Hydrotalcite-derived Catalyst. ChemCatChem 2020, 12, 1467–1475. [Google Scholar] [CrossRef]
- Mao, W.; Liu, J.; Yin, B.; Miao, S.; Li, Y.; Kong, D.; Wang, F. Co-Cr composite oxides efficiently catalyzed transfer hydrogenation of α, β-unsaturated aldehydes via N-doped carbon and interfacial electron migration. Mol. Catal. 2022, 524, 112257. [Google Scholar] [CrossRef]
- Cheng, S.; Ding, J.; Chen, Y.; Pan, G.; Feng, X.; Xu, X.; Xu, J. Enhanced catalytic transfer hydrogenation of biomass-based furfural into furfuryl alcohol over Co3O4-based mixed oxide catalysts from hydrotalcite. Appl. Catal. A-Gen. 2024, 684, 119909. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Z.; Zhou, S.; Wei, M. Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catal. 2021, 11, 6440–6454. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Yang, X.; Tao, Z.; Ren, X.; Lv, B. The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Appl. Surf. Sci. 2019, 492, 736–745. [Google Scholar] [CrossRef]
- Li, J.; Xi, Y.; Qiao, Y.; Zhao, Z.; Liu, J.; Li, F. Solvent Effects on Heterogeneous Catalysis for the Selective Hydrogenation. ChemCatChem 2024, 16, e202400120. [Google Scholar] [CrossRef]
- Liu, S.; He, Y.; Fu, W.; Chen, J.; Ren, J.; Liao, L.; Sun, R.; Tang, Z.; Mebrahtu, C.; Zeng, F. Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: A review. J. CO2 Util. 2023, 67, 102322. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Chen, Z.; Ding, Y.; Zhang, L.; Lv, L.; Wang, Y.; Xu, D.; Wang, S. Synthesis of Co3O4 nanoparticles with controllable size and their catalytic properity. Solid State Sci. 2018, 82, 78–83. [Google Scholar] [CrossRef]
- Xie, H.; Guo, T.; Zhang, Y.; Huang, Z.; Hu, H.; He, Q.; Gan, T. Mechanical activation assisted synthesis of atomically dispersed cobalt catalysts supported on N, P co-doped cellulose-derived carbon for nitrobenzene hydrogenation. Appl. Surf. Sci. 2025, 685, 162020. [Google Scholar] [CrossRef]
- Cao, F.; Ni, W.; Zhao, Q.; Wang, L.; Xue, S.; Li, Y.; Kong, D.; Wu, M.; Zhi, L. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes. Appl. Catal. B-Environ. Energy 2024, 346, 123762. [Google Scholar] [CrossRef]
- Li, J.; Yan, X.; Ren, Y.; Liu, T.; Li, K.; Wei, H. Synergy of metallic Co and Co-N species in highly dispersed Co based catalyst for enhanced nitroarene hydrogenation. Fuel 2024, 375, 132567. [Google Scholar] [CrossRef]
- Mohammadi, M.-R.; Hadavimoghaddam, F.; Atashrouz, S.; Abedi, A.; Hemmati-Sarapardeh, A.; Mohaddespour, A. Modeling hydrogen solubility in alcohols using machine learning models and equations of state. J. Mol. Liq. 2022, 346, 117807. [Google Scholar] [CrossRef]
- Gao, X.; Tian, S.; Jin, Y.; Wan, X.; Zhou, C.; Chen, R.; Dai, Y.; Yang, Y. Bimetallic PtFe-Catalyzed Selective Hydrogenation of Furfural to Furfuryl Alcohol: Solvent Effect of Isopropanol and Hydrogen Activation. ACS Sustain. Chem. Eng. 2020, 8, 12722–12730. [Google Scholar] [CrossRef]
- Li, X.-L.; Zhang, K.; Chen, S.-Y.; Li, C.; Li, F.; Xu, H.-J.; Fu, Y. A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chem. 2018, 20, 1095–1105. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Lyu, S.; Ren, X.; Liu, G.; Wang, L. Highly dispersed Pd nanoparticles supported on SBA-15@derived C from RF resin for hydrogenation of 2-ethylanthraquinone. AlChE J. 2025, 71, e18862. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80. [Google Scholar] [CrossRef]
- Stephan, D.W. Frustrated Lewis Pairs: From Concept to Catalysis. Acc. Chem. Res. 2014, 48, 306–316. [Google Scholar] [CrossRef]
- Li, S.; Wu, Q.; You, X.; Ren, X.; Du, P.; Li, F.; Zheng, N.; Shen, H. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. J. Am. Chem. Soc. 2024, 146, 27852–27860. [Google Scholar] [CrossRef]
- Yu, M.; Liu, L.; Wang, Q.; Jia, L.; Hou, B.; Si, Y.; Li, D.; Zhao, Y. High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics. Int. J. Hydrogen Energy 2018, 43, 5576–5590. [Google Scholar] [CrossRef]
- Yang, H.; Goldbach, A.; Shen, W. Acetone hydrogenation over face-centered cubic and hexagonal close-packed cobalt. Int. J. Hydrogen Energy 2024, 51, 1360–1372. [Google Scholar] [CrossRef]
- Yang, Y.; Rao, D.; Chen, Y.; Dong, S.; Wang, B.; Zhang, X.; Wei, M. Selective Hydrogenation of Cinnamaldehyde over Co-Based Intermetallic Compounds Derived from Layered Double Hydroxides. ACS Catal. 2018, 8, 11749–11760. [Google Scholar] [CrossRef]
- Kubas, G.J. Molecular hydrogen complexes: Coordination of a. sigma. bond to transition metals. Acc. Chem. Res. 1988, 21, 120–128. [Google Scholar] [CrossRef]
- Kubas, G.J. Activation of dihydrogen and coordination of molecular H2 on transition metals. J. Organomet. Chem. 2014, 751, 33–49. [Google Scholar] [CrossRef]
- Crabtree, R.H. Dihydrogen complexes: Some structural and chemical studies. Acc. Chem. Res. 1990, 23, 95–101. [Google Scholar] [CrossRef]
- Crabtree, R.H. Dihydrogen Complexation. Chem. Rev. 2016, 116, 8750–8769. [Google Scholar] [CrossRef]
- Welch, G.C.; San Juan, R.R.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef]
- Ghuman, K.K.; Hoch, L.B.; Wood, T.E.; Mims, C.; Singh, C.V.; Ozin, G.A. Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO2 Hydrogenation Catalysis. ACS Catal. 2016, 6, 5764–5770. [Google Scholar] [CrossRef]
- Riddhi, R.K.; Penas-Hidalgo, F.; Chen, H.; Quadrelli, E.A.; Canivet, J.; Mellot-Draznieks, C.; Solé-Daura, A. Experimental and computational aspects of molecular frustrated Lewis pairs for CO2 hydrogenation: En route for heterogeneous systems? Chem. Soc. Rev. 2024, 53, 9874–9903. [Google Scholar] [CrossRef]
- Hongyun, Y.; Jingjun, L.; Kaiyue, H.; Riyang, S.; Zhipeng, T.; Chao, W.; Ying, C. Mechanism of solvent effect on hydrogenation of lignin-derived phenolic compounds. CIESC J. 2022, 73, 4498–4506. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, H.; Sun, J.; Wei, X.-Z.; Zhang, Q.; Zhang, X.; Chen, L.; Liu, J.; Chen, Y.; Ma, L. Solvent effect in selective hydrogenation of cinnamaldehyde over Pd–Ni nanoclusters encapsulated within siliceous zeolite. Microporous Mesoporous Mater. 2024, 367, 112979. [Google Scholar] [CrossRef]
- Yamada, H.; Goto, S. The Effect of Solvents Polarity on Selective Hydrogenation of Unsaturated Aldehyde in Gas-Liquid-Solid Three Phase Reactor. J. Chem. Eng. Jpn. 2003, 36, 586–589. [Google Scholar] [CrossRef]
- Lashdaf, M.; Nieminen, V.-V.; Tiitta, M.; Venäläinen, T.; Österholm, H.; Krause, O. Role of acidity in hydrogenation of cinnamaldehyde on platinum beta zeolite. Microporous Mesoporous Mater. 2004, 75, 149–158. [Google Scholar] [CrossRef]
- Hou, Z.; Zhu, Y.; Chi, H.; Zhao, L.; Wei, H.; Xi, Y.; Ma, L.; Feng, X.; Lin, X. Silica-modified Pt/TiO2 catalysts with tunable suppression of strong metal–support interaction for cinnamaldehyde hydrogenation. Chin. J. Chem. Eng. 2024, 70, 189–198. [Google Scholar] [CrossRef]
- Bai, Y.; Cherkasov, N.; Huband, S.; Walker, D.; Walton, R.; Rebrov, E. Highly Selective Continuous Flow Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in a Pt/SiO2 Coated Tube Reactor. Catalysts 2018, 8, 58. [Google Scholar] [CrossRef]
Synthesis Method | Co Species | Advantages | Disadvantages | Scale |
---|---|---|---|---|
Impregnation method | Co NPs | Operational convenience; facile operation; economy | Need pretreatment; aggregation of particles | Nanoscale |
Precipitation method | Co NPs, Co3O4 | Economy; simple equipment/process; facile operation | Poor uniformity | Nanoscale |
Solvothermal methods | Co3O4 | Operational convenience; controllable size; good dispersion | Low production; dependence on equipment; | Nanoscale |
Sol–gel method | Co NPs, Co3O4, composite oxides | Mild preparation conditions; controllable structure; anti-deactivation | Long preparation cycle | Cluster scale |
Pyrolysis method | Co3O4; Co complexes | Good dispersion; atomic control | Rely on substrate material; long preparation cycle | Atomic or cluster scale |
Entry | Catalyst | Loading (wt %) | Reactant | Product | Reaction Condition | X (%) | SUOL (%) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | t (h) | Solvent | ||||||||
H2 dissociation hydrogenation | |||||||||||
1 | Co/TiO2 | 15.0 | CAL | COL | 120 | 1.0 | 1.0 | Methanol | 47.4 | 58.0 | [87] |
2 | CoAl | 11.7 | CAL | COL | 150 | - | 5.0 | Propylene carbonate | 51.0 | 57.0 | [88] |
3 | ε-CoNP/GOX | 4.5 | CAL | COL | 120 | 2.0 | 4.0 | Dioxane | 45.1 | 100.0 | [89] |
4 | Co-C-500 | 56.0 | CAL | COL | 90 | 2.0 | 4.0 | Ethanol + H2O | 85.3 | 51.5 | [90] |
5 | Co@NPC | 69.8 | CAL | COL | 80 | 0.5 | 5.0 | H2O | 85.5 | 79.1 | [91] |
6 | Co-NC-450 | 80.0 | FAL | FOL | 110 | 1.5 | 2.0 | H2O | 92.0 | 99.0 | [92] |
7 | Co/NC-700 | 55.0 | FAL | FOL | 120 | 2.0 | 0.5 | Methanol | 83.0 | 100.0 | [93] |
8 | Co/CoNx/C | 48.9 | CAL | COL | 30 | 2.0 | 13.0 | methylbenzene | 94.0 | 93.0 | [26] |
9 | Co-N-C@F1270.3 | 29.1 | FAL | FOL | 140 | 1.0 | 2.0 | 2-POL | 97.2 | 92.5 | [83] |
10 | Co@L2N@b-TiO2–N-7 | 3.13 | CAL | COL | 100 | 2.0 | 6.0 | 2-POL | 59.0 | 97.0 | [94] |
11 | Co@BN/BN-600 | 8.5 | CAL | COL | 120 | 0.4 | 11.0 | Ethanol | 83.3 | 81.3 | [95] |
12 | Co2Al-H2-400 | NA | CAL | COL | 100 | 2.0 | 2.0 | H2O | 97.0 | 73.6 | [96] |
13 | Co/ZrLa0.2Ox | 8.8 | FAL | FOL | 80 | 2.0 | 2.0 | H2O | 95.0 | 92.0 | [97] |
14 | CuCo/MgO-0.04 | 5.0 | FAL | FOL | 100 | 2.0 | 0.7 | 2-POL | 82.4 | 92.7 | [98] |
15 | CuCo/NC | 39.3 | FAL | FOL | 100 | 3.0 | 6.0 | Ethanol | 35.6 | 94.3 | [82] |
16 | CoZnB/Nb2CTx | 9.5 | CAL | COL | 100 | 3.5 | 2.0 | 2-POL | 91.4 | 72.6 | [99] |
17 | Co-Fe-1%Zn-B | 60.7 | CAL | COL | 130 | 2.0 | 1.0 | Ethanol | 97.7 | 100.0 | [100] |
18 | Co-Fe/ACBT | 8.3 | CAL | COL | 120 | 2.0 | 5.0 | Methanol | 90.5 | 86.8 | [101] |
19 | Fe0.5Co@NC | 46.8 | CAL | COL | 80 | 2.0 | 5.0 | Water | 95.1 | 91.7 | [102] |
Catalytic transfer hydrogenation | |||||||||||
20 | Co3O4@NC | 3.5 | CAL | COL | 180 | 1.0 | 12.0 | 2-POL | 81.1 | 94.1 | [35] |
21 | Co3O4/MC | 15.0 | FAL | FOL | 160 | 1.0 | 6.0 | 2-POL | 100.0 | 98.0 | [33] |
22 | Co3O4/NCNF | 22.0 | CAL | COL | 160 | - | 5.0 | 2-POL | 100.0 | 95.0 | [34] |
23 | CoOx@Co-500 | 15.6 | CAL | COL | 120 | - | 8.0 | 2-POL | 97.5 | 90.1 | [37] |
24 | ZIF-67@SiO2-CPTEOS | 17.4 | CAL | COL | 180 | 1.0 | 12.0 | 2-POL | 84.6 | 95.0 | [103] |
25 | Co3O4-Al2O3 | 45.8 | FAL | FOL | 150 | - | 6.0 | 2-POL | 76.3 | 97.0 | [104] |
26 | CoCrOx (1:2)-CN | 8.6 | CAL | COL | 120 | 1.0 | 12.0 | 2-POL | 97.5 | 95.3 | [105] |
27 | Co1.5Mg1.5Al1-LDO-500 | 15.5 | FAL | FOL | 160 | - | 6.0 | 2-POL | 99.7 | 95.9 | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Xu, J.; Luo, X.; Qin, Z. Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes. Catalysts 2025, 15, 689. https://doi.org/10.3390/catal15070689
Shi H, Xu J, Luo X, Qin Z. Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes. Catalysts. 2025; 15(7):689. https://doi.org/10.3390/catal15070689
Chicago/Turabian StyleShi, Haixiang, Jianming Xu, Xuan Luo, and Zuzeng Qin. 2025. "Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes" Catalysts 15, no. 7: 689. https://doi.org/10.3390/catal15070689
APA StyleShi, H., Xu, J., Luo, X., & Qin, Z. (2025). Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes. Catalysts, 15(7), 689. https://doi.org/10.3390/catal15070689