Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation
Abstract
1. Introduction
2. Main Types of Iron-Based Cathode Catalysts
2.1. Zero-Valent Iron and Iron-Based Alloy
2.2. Iron Oxides
2.3. Iron-Carbon/Nitrogen-Doped Carbon Composites
2.4. Iron Sulfides/Phosphides
2.5. Iron-Based MOFs
3. Reaction Pathways
3.1. Radical Pathways
3.2. Non-Radical Pathways
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srisangari, C.; Marathe, K.V. Degradation of an emerging organic contaminant via heterogeneous photocatalytic ozonation using V2O5 doped ZnO under UV irradiation. J. Water Process Eng. 2024, 63, 105543. [Google Scholar] [CrossRef]
- Li, H.; Ji, H.; Liu, J.; Liu, W.; Li, F.; Shen, Z. Interfacial modulation of ZnIn2S4 with high active Zr-S4 sites for boosting photocatalytic activation of oxygen and degradation of emerging contaminant. Appl. Catal. B Environ. 2023, 328, 122481. [Google Scholar] [CrossRef]
- Mahanty, B.; Saawarn, B.; Mahto, B.; Hussain, S.; Hait, S. Efficient removal of perfluorooctanoic acid from aqueous matrices using cationic surfactant functionalized graphene oxide nanocomposite: RSM and ANN modeling, and adsorption behaviour. J. Water Process Eng. 2024, 68, 106448. [Google Scholar] [CrossRef]
- Ganthavee, V.; Trzcinski, A.P. Removal of pharmaceutically active compounds from wastewater using adsorption coupled with electrochemical oxidation technology: A critical review. J. Ind. Eng. Chem. 2023, 126, 20–35. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Makhathini, T.P.; Bwapwa, J.K.; Bakare, B.F.; Rathilal, S. The occurrence and fate of antibiotics and nonsteroidal anti-inflammatory drugs in water treatment processes: A review. J. Hazard. Mater. Adv. 2023, 10, 100330. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choi, Y. Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Weng, H.; Yang, Y.; Zhang, C.; Cheng, M.; Wang, W.; Song, B.; Luo, H.; Qin, D.; Huang, C.; Qin, F.; et al. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater. Chem. Eng. J. 2023, 453, 139812. [Google Scholar] [CrossRef]
- Magdaleno, A.L.; Brillas, E.; Garcia-Segura, S.; Santos, A.J.D. Comparison of electrochemical advanced oxidation processes for the treatment of complex synthetic dye mixtures. Sep. Purif. Technol. 2024, 345, 127295. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Wei, K.; Liu, L.; Sun, M.; Zhou, M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. Chemosphere 2023, 341, 140083. [Google Scholar] [CrossRef]
- Mi, Y.; Zhang, S.; Zhao, Y.; Sun, G.; Cao, Z. Pyrrolic N and persistent free radical synergistically promote catalytic degradation of dyes via Fe2O3/activated biochar derived from Taihu blue algae. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131393. [Google Scholar] [CrossRef]
- Song, G.; Zhou, M.; Du, X.; Su, P.; Guo, J. Mechanistic insight into the heterogeneous electro-Fenton/sulfite process for ultraefficient degradation of pollutants over a wide pH range. ACS EST Water 2021, 1, 1637–1647. [Google Scholar] [CrossRef]
- Shao, C.; Ren, S.; Zhang, Y.; Wen, Z.; Wang, A.; Zhang, Z. Construction of a novel dual-cathode flow-through heterogeneous electro-Fenton system for enhanced mass transfer during H2O2 production and activation in cefoperazone degradation. Sep. Purif. Technol. 2025, 363, 132235. [Google Scholar] [CrossRef]
- Xia, J.; Cao, J.; Zhu, J.; Cai, J.; Huang, C.; Liu, J.; Liu, J.; Fang, Y.; Wang, P. In-situ heterogeneous electro-Fenton based on B, Fe-modified carbon felts for phosphorus nutrients treatment in dredged sediment. Chem. Eng. J. 2024, 481, 148619. [Google Scholar] [CrossRef]
- Zhang, C.; Li, F.; Wen, R.; Zhang, H.; Elumalai, P.; Zheng, Q.; Chen, H.; Yang, Y.; Huang, M.; Ying, G. Heterogeneous electro–Fenton using three–dimension NZVI–BC electrodes for degradation of neonicotinoid wastewater. Water Res. 2020, 182, 115975. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Gao, J.; Meng, H.; Chai, S.; Jian, Y.; Shi, L.; Wang, Y.; He, C. Selective electrochemical H2O2 generation on the graphene aerogel for efficient electro-Fenton degradation of ciprofloxacin. Sep. Purif. Technol. 2021, 272, 118884. [Google Scholar] [CrossRef]
- Assila, O.; Bencheqroun, Z.; Rombi, E.; Valente, T.; Braga, A.S.; Zaitan, H.; Kherbeche, A.; Soares, O.S.G.P.; Pereira, M.F.R.; Neves, I.C. Raw clays from Morocco for degradation of pollutants by Fenton-like reaction for water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 679, 132630. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Yu, W.; Ren, J.; Qiu, C.; Chen, Y.; Peng, Y.; Bian, Z. Molybdenum carbide nanoclusters with ultrafast electron transfer ability promotes molecular oxygen selective electrocatalytic reduction to hydroxyl radicals for pollutant control. Sep. Purif. Technol. 2024, 343, 127144. [Google Scholar] [CrossRef]
- Najafzadeh, A.; Ayati, B. Improvement of electro-Fenton process by using heterogeneous Fe-MIL-88B nanocatalyst and simultaneous rotation of cathode and anode for dye removal. Sci. Rep. 2024, 14, 24038. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, W.; Li, J.; Liu, B.; Cui, L.; Rong, L.; Yang, Q.; Yang, Z. Electro-Fenton degradation of emerging contaminants using Cu-Co bimetallic-modified nickel foam cathodes: The role of metal surface structure and singlet oxygen. Sep. Purif. Technol. 2025, 368, 133050. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, Q.; Mo, C.; Ma, X.; Zhang, W.; Tang, H.; Fan, Z.; Wang, Y.; Fan, G.; Zhang, L. Construction of Fe-Mn-La/Ce@biochar electrodes 3D/HEF systems for efficient electro-Fenton degradation of coking wastewater: Performance and mechanism insights. J. Environ. Manag. 2025, 386, 125779. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. Chemosphere 2021, 276, 130177. [Google Scholar] [CrossRef] [PubMed]
- Chai, D.; Chen, Y.; Jiang, Z.; Li, Z.; Zhang, X.; Chen, X.; Wang, Y.; Cui, K. Insight on magnetic nitrogen-doped graphene oxide composite electrode constructing heterogeneous Electro-Fenton system for treating organophosphorus pesticide wastewater. Sep. Purif. Technol. 2024, 345, 127419. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, R.; Zhou, H.; Zeng, G.; Kuang, C.; Li, C. Sustainable electro-Fenton simultaneous reduction of Cr (VI) and degradation of organic pollutants via dual-site porous carbon cathode driving uncoordinated molybdenum sites conversion. Water Res. 2024, 259, 121835. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, F.; Shen, X.; Zhang, D.; Chu, W.; Zhao, H.; Zhao, G. Electronic control of traditional iron–carbon electrodes to regulate the oxygen reduction route to scale up water purification. Environ. Sci. Technol. 2022, 56, 13740–13750. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y.; Zheng, H.; Pan, Y.; Luo, J.; Cao, J.; Liu, F. FeCo-ZIF derived carbon-encapsulated metal alloy as efficient cathode material for heterogeneous electro-Fenton reaction in 3-electron ORR pathway: Enhanced performance in alkaline condition. Sep. Purif. Technol. 2023, 325, 124545. [Google Scholar] [CrossRef]
- Liu, M.; Feng, Z.; Luan, X.; Chu, W.; Zhao, H.; Zhao, G. Accelerated Fe2+ regeneration in an effective electro-Fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex. Environ. Sci. Technol. 2021, 55, 6042–6051. [Google Scholar] [CrossRef]
- Li, J.; Zheng, W.; Meng, S.; Wang, S.; Zhan, S.; Sun, Y.; Hu, W.; Li, Y. Modulated Fe central spin state in FeCu4 alloy nanoparticles for efficient and selective activation of H2O2. Adv. Funct. Mater. 2025, 35, 2417538. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, Z.; Ding, Y.; Ma, Y.; Fu, X.; Sun, J.; Ma, M.; Zhu, W.; Wang, J. In-situ synthesis of self-standing cobalt-doped nickel sulfide nanoarray as a recyclable and integrated catalyst for peroxymonosulfate activation. Appl. Catal. B Environ. Energy 2022, 307, 121184. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, M.; Tang, D.; Xu, Y.; Ran, H.; He, J.; Chen, K.; Sun, J. High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Appl. Catal. B Environ. 2022, 315, 121523. [Google Scholar] [CrossRef]
- Ji, W.; Wei, J.; Xu, M.; Wang, L.; Huo, J.; Li, Y.; Cui, N.; Li, J.; Cui, X.; Jiang, Z.; et al. Enhanced organic contaminant eradication using boron-doped bimetallic cathodes in electro-Fenton: Unveiling structure–activity relationship. Chem. Eng. J. 2024, 496, 154051. [Google Scholar] [CrossRef]
- Yu, D.; Xu, L.; Fu, K.; Liu, X.; Wang, S.; Wu, M.; Lu, W.; Lv, C.; Luo, J. Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation. Nat. Commun. 2024, 15, 2241. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, L.; Tang, W.; Yang, Y. In situ grown petal-like La-doped FeCo-layered double hydroxide on carbon felt for enhanced moxifloxacin hydrochloride removal via heterogeneous electro-Fenton process. Chemosphere 2024, 369, 143845. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wei, J.; Cui, X.; Li, J.; Pan, G.; Li, Y.; Jiang, Z.; Niu, X.; Cui, N.; Li, J. High-efficiency electro-Fenton process based on in-situ grown CoFeCe-LDH@CFs free-standing cathodes: Correlation of cerium and oxygen vacancies with H2O2. Chem. Eng. J. 2023, 455, 140922. [Google Scholar] [CrossRef]
- Sun, X.; Qi, H.; Sun, Z. Bifunctional nickel foam composite cathode co-modified with CoFe@NC and CNTs for electrocatalytic degradation of atrazine over wide pH range. Chemosphere 2022, 286, 131972. [Google Scholar] [CrossRef]
- Ma, X.; Rao, T.; Zhao, M.; Jia, Z.; Ren, G.; Liu, J.; Guo, H.; Wu, Z.; Xie, H. A novel induced zero-valent iron electrode for in-situ slow release of Fe2+ to effectively trigger electro-Fenton oxidation under neutral pH condition: Advantages and mechanisms. Sep. Purif. Technol. 2022, 283, 120160. [Google Scholar] [CrossRef]
- Tesnim, D.; Díez, A.M.; Amor, H.B.; Sanromán, M.; Pazos, A. Synthesis and characterization of eco-friendly cathodic electrodes incorporating nano Zero-Valent iron (NZVI) for the electro-Fenton treatment of pharmaceutical wastewater. Chem. Eng. J. 2024, 502, 158099. [Google Scholar] [CrossRef]
- Tesnim, D.; Díez, A.M.; Hédi, B.A.; Sanroman, M.Á. Pazos, Sustainable removal of antipyrine from wastewater via an Eco-Friendly heterogeneous Electro-Fenton-like process employing Zero-Valent iron nanoparticles loaded activated carbon. Chem. Eng. J. 2024, 493, 152494. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, M.; Pan, Y.; Cai, J.; Ren, G. Pre-magnetized Fe0 as heterogeneous electro-Fenton catalyst for the degradation of p-nitrophenol at neutral pH. Chemosphere 2020, 240, 124962. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Song, Y.; Liu, Z.; Ding, H.; Zhao, C.; Wang, P. Role of micro-size zero valence iron as particle electrodes in a three-dimensional heterogeneous electro-ozonation process for nitrobenzene degradation. Chemosphere 2021, 276, 130264. [Google Scholar] [CrossRef]
- Kang, Y.-G.; Hong, S.; Yoon, H.; Song, I.-G.; Cho, K.; Chang, Y.-S. Mechanically combined persulfate on zerovalent iron: Mechanistic insights into reduction and oxidation processes. Chem. Eng. J. 2021, 414, 128772. [Google Scholar] [CrossRef]
- Ma, X.; Xu, Z.; Zhang, L.; Sun, S.; Liu, C.; Zhang, J.; He, F.; Dong, P.; Zhao, C.; Sun, H. Nano zero-valent iron-based fiber electrode for efficient electro-Fenton treatment of pharmaceutical wastewater: Mechanism of degradation and sterilization. Chem. Eng. J. 2023, 475, 146049. [Google Scholar] [CrossRef]
- Raji, M.; Mirbagheri, S.A.; Ye, F.; Dutta, J. Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater. Chemosphere 2021, 263, 127945. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, C.; Liu, Z.; Li, H.; Fu, Z.; Zhang, H.; Wang, G.; Zhang, Y. E-waste derived CuAu bimetallic catalysts supported on carbon cloth enabling effective degradation of bisphenol A via an electro-Fenton process. Sep. Purif. Technol. 2023, 305, 122507. [Google Scholar] [CrossRef]
- Li, Z.-H.; Liu, H.-L.; Kong, D.-F.; Gong, C.; Chen, X. Novel CoFe-NC bimetallic catalysts for heterogeneous electro-Fenton process to remove BAA in dye wastewater. J. Environ. Chem. Eng. 2024, 12, 112114. [Google Scholar] [CrossRef]
- Dong, C.; Chen, Y.; Yang, C.; Li, P.; Zhang, Y.; Wang, P.; Wang, Y.; Fang, W.; Lin, L.; Li, X.-Y. Pinning-effect single-atom NiCo alloy embedded graphene-aerogel in electro-fenton process for rapid degradation of emerging contaminants. Appl. Catal. B Environ. Energy 2024, 357, 124286. [Google Scholar] [CrossRef]
- Li, S.; Zhou, M.; Wu, H.; Song, G.; Jing, J.; Meng, N.; Wang, W. High-efficiency degradation of carbamazepine by the synergistic electro-activation and bimetals (FeCo@NC) catalytic-activation of peroxymonosulfate. Appl. Catal. B Environ. 2023, 338, 123064. [Google Scholar] [CrossRef]
- He, J.; Yu, D.; Zou, X.; Wang, Z.; Zheng, Y.; Liu, X.; Zeng, Y. Degradation intermediates of Amitriptyline and fundamental importance of transition metal elements in LDH-based catalysts in Heterogeneous Electro-Fenton system. Sep. Purif. Technol. 2022, 283, 120225. [Google Scholar] [CrossRef]
- Chen, X.; Teng, W.; Fan, J.; Chen, Y.; Ma, Q.; Xue, Y.; Zhang, C.; Zhang, W.-X. Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight. J. Hazard. Mater. 2022, 427, 127896. [Google Scholar] [CrossRef]
- Zhu, T.; Shi, X.; Yan, Z.; Sun, Z. Constructing heterointerfaces to enhance electron transfer of CoFe/CoFe2O4 mediated electro-Fenton process for bisphenol A degradation: Mechanistic insights and performance evaluation. Sep. Purif. Technol. 2025, 354, 129105. [Google Scholar] [CrossRef]
- Ye, Q.; Hunter, T.N.; Xu, H.; Harbottle, D.; Kale, G.M.; Tillotson, M.R. Synergistic effect of Fe and Ni on carbon aerogel for enhanced oxygen reduction and H2O2 activation in electro-Fenton process. Sep. Purif. Technol. 2025, 353, 128436. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, L.; Ma, S.; He, Y.; Li, P.; Zhang, X.; Lei, L. Highly efficient heterogeneous electro-Fenton degradation of organic pollutants using a FeNi-OH/NF cathode. Sep. Purif. Technol. 2023, 314, 123604. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, X.; Chen, R.; Zhao, Y.; Ge, H. α-Fe2O3 nanosheets as Electro-Fenton catalyst for highly efficient phenol degradation. Inorg. Chem. Commun. 2024, 162, 112183. [Google Scholar] [CrossRef]
- Azizi, J.; Davarnejad, R. Electro-Fenton technique associated with core-shell Fe@Fe2O3 nanoparticles-bentonite catalyst for pre-treating a super-pollutant industrial wastewater. J. Water Process Eng. 2023, 51, 103385. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, X.; He, F.; Lu, M.; Zhang, J.; Wang, S.; Dong, P.; Zhao, C. In situ generated iron oxide nanosheet on iron foam electrode for enhanced electro-Fenton performance toward pharmaceutical wastewater treatment. J. Hazard. Mater. 2024, 465, 133193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, S.; Feng, H.; Hu, T.; Wu, Y.; Luo, T.; Tang, W.; Wang, D. Efficient degradation of tetracycline using core–shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst. Chem. Eng. J. 2022, 428, 131403. [Google Scholar] [CrossRef]
- Li, B.; Sun, J.-D.; Tang, C.; Yan, Z.-Y.; Zhou, J.; Wu, X.-Y.; Jia, H.-H.; Yong, X.-Y. A novel core-shell Fe@Co nanoparticles uniformly modified graphite felt cathode (Fe@Co/GF) for efficient bio-electro-Fenton degradation of phenolic compounds. Sci. Total Environ. 2021, 760, 143415. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, F.; Hou, X.; Wang, L.; Wu, W.; Wang, L.; Li, Y.; Xie, H. Fe@Fe2O3/etched carbon felt as a cathode for efficient bisphenol a removal in a flow-through electro-Fenton system: Electron transfer pathway and underlying mechanism. Sep. Purif. Technol. 2024, 334, 125982. [Google Scholar] [CrossRef]
- Pan, Z.; Xin, H.; Xu, R.; Wang, P.; Fan, X.; Song, Y.; Song, C.; Wang, T. Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. J. Colloid Interface Sci. 2023, 640, 588–599. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, S.; Yang, F. Efficient Adsorption and Combined Heterogeneous/Homogeneous Fenton Oxidation of Amaranth Using Supported Nano-FeOOH as Cathodic Catalysts. J. Phys. Chem. C 2012, 116, 3623–3634. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Li, B.; Yu, M.; Zhao, R.; Xu, X.; Cai, L. γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole. Chem. Eng. J. 2019, 359, 914–923. [Google Scholar] [CrossRef]
- Lv, F.; Zhao, X.; Pan, S.; Cao, W.; Zuo, X.; Li, Y. Electrodeposition of FeOOH nanosheets on carbon felt for enhanced sulfamerazine removal via visible light-assisted electro-Fenton process. J. Water Process Eng. 2022, 48, 102883. [Google Scholar] [CrossRef]
- Wen, L.; Wang, D.; Xi, J.; Tian, F.; Liu, P.; Bai, Z.-W. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations. J. Catal. 2022, 413, 779–785. [Google Scholar] [CrossRef]
- Dong, H.; Du, W.; Dong, J.; Che, R.; Kong, F.; Cheng, W.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Li, H.; Yang, P.; Zou, Z. Fe3O4 core–shell catalysts supported by nickel foam for efficient heterogeneous electro-Fenton degradation of salicylic acid at neutral pH. Sep. Purif. Technol. 2022, 301, 121993. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Q.; Yu, Y.; Li, Z.; Liu, Y.; Qin, Z.; Fan, X. Facile electrophoretically deposited of iron/carbon nanotube-based electro-Fenton cathode for high-performance organics degradation. J. Environ. Chem. Eng. 2025, 13, 115127. [Google Scholar] [CrossRef]
- Lv, Z.; Miao, J.; Wei, X.; Zhou, X.; Zhang, N.; Xu, H.; Peng, S. Graphene oxide enhanced Iron-carbon aerogel electrodes for heterogeneous electro-Fenton oxidation of phenol. J. Electroanal. Chem. 2025, 985, 119084. [Google Scholar] [CrossRef]
- Ghanbarlou, H.; Nasernejad, B.; Fini, M.N.; Simonsen, M.E.; Muff, J. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system. Chem. Eng. J. 2020, 395, 125025. [Google Scholar] [CrossRef]
- Wang, T.; Yang, C.-C.; Qin, K.; Chen, C.-W.; Dong, C.-D. Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction. J. Hazard. Mater. 2021, 406, 124791. [Google Scholar] [CrossRef]
- Cao, C.; Guo, Y.; Chen, D.; Cui, J.; Hu, X. A MOF-derived Fe3O4/Fe0/Fe3C-2-600 dual-cathode electro-Fenton system construction: Revealing the mechanism for active centers linked by Fe0 as an electronic transfer station for enhancing Fenton reaction. Chem. Eng. J. 2025, 507, 160710. [Google Scholar] [CrossRef]
- Chen, Y.; Su, R.; Xu, F.; Ma, M.; Wang, Y.; Ma, D.; Li, Q. Oxygen-containing functional groups in Fe3O4@three-dimensional graphene nanocomposites for enhancing H2O2 production and orientation to 1O2 in electro-Fenton. J. Hazard. Mater. 2024, 470, 134162. [Google Scholar] [CrossRef]
- Daniel, G.; Zhang, Y.; Lanzalaco, S.; Brombin, F.; Kosmala, T.; Granozzi, G.; Wang, A.; Brillas, E.; Sirés, I.; Durante, C. Chitosan-derived nitrogen-doped carbon electrocatalyst for a sustainable upgrade of oxygen reduction to hydrogen peroxide in UV-assisted electro-Fenton water treatment. ACS Sustain. Chem. Eng. 2020, 8, 14425–14440. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.; Yu, J.; Nie, W.; Sun, J.; Wang, S. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environ. Sci. Technol. 2021, 55, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, D.; Jiang, L.; Hao, Z.; Deng, B.; Chen, L.; Jia, B.; Sun, Y.; Liu, X.; Liu, H. High selectivity and efficient utilization of H2O2 in a metal-free Electro-Fenton system with nitrogen doped cathode for the degradation of sulfamethazine. Chem. Eng. J. 2024, 489, 151279. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, C.; Cao, C.; Hu, X. N-doped carbon-based catalysts in situ generation hydrogen peroxide via 2-electron oxygen reduction reaction for degradation of organic contaminants in heterogeneous electro-Fenton process: A mini review. Surf. Interfaces 2023, 38, 102879. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Z.; Zhang, G.; Hu, Z.; He, M.; Jia, J.; Li, H.; Zhang, X.; Zhou, W. The promotion mechanism of different nitrogen doping types on the catalytic activity of activated carbon electro-Fenton cathode: Simultaneous promotion of H2O2 generation and phenol degradation ability. Environ. Res. 2024, 257, 119295. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, J.; Wang, Z.; Liu, Y.; Yang, Z.; Yang, W. Novel Fe/N co-doping biochar based electro-Fenton catalytic membrane enabling enhanced tetracycline removal and self-cleaning performance. J. Clean. Prod. 2023, 402, 136731. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, J.; Ou, Z.; Lai, J.; Yu, T.; Wang, Y. N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. Chin. J. Catal. 2021, 42, 953–962. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, F.; Zhang, B.; Xu, C.; Yang, W.; Li, Y. Fabrication of novel FeS2 NWs/Ti3C2 cathode for Photo-Electro-Fenton degradation of sulfamethazine. Chem. Eng. J. 2021, 426, 130719. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Ma, H.; Zhou, M. Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(II)/Fe(III) cycle. Sep. Purif. Technol. 2020, 248, 117022. [Google Scholar] [CrossRef]
- Cui, T.; Xiao, Z.; Wang, Z.; Liu, C.; Song, Z.; Wang, Y.; Zhang, Y.; Li, R.; Xu, B.; Qi, F. Ikhlaq, FeS2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model. Environ. Pollut. 2021, 282, 117023. [Google Scholar] [CrossRef]
- Mei, S.-C.; Huang, G.-X.; Pan, X.-Q.; Yu, H.-Q. Heterogeneous Fenton water purification catalyzed by iron phosphide (FeP). Water Res. 2023, 241, 120151. [Google Scholar] [CrossRef]
- Liao, Y.; Zhu, S.; Liu, H.; Chen, Y.; Xue, J.; Qian, W.; Zhou, Z.; Yang, W. Electrochemical selection of ferrous phosphide (FexP) as efficient catalyst for wastewater treatment: Performance and mechanism. J. Electroanal. Chem. 2024, 964, 118333. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, Y.-Y.; Dong, Z.-T.; Liu, H.-Y.; Feng, H.-P.; Guo, H.; Sui, L.; Tian, Y.; Yan, M.; Niu, C.-G. One-step phosphidation-prepared FeP@ECC achieves efficient H2O2 generation and activation in the electro-Fenton system for the degradation of sulfamethoxazole: Enhanced active sites and electron transfer efficiency. Chem. Eng. J. 2024, 500, 157126. [Google Scholar] [CrossRef]
- He, X. Fundamental perspectives on the electrochemical water applications of Metal–Organic Frameworks. Nano-Micro Lett. 2023, 15, 148. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z.; Nie, S.; Zhao, Z. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation. Chem. Eng. J. 2020, 398, 125684. [Google Scholar] [CrossRef]
- Zhu, H.; Yin, X.; Wang, Y.; Wei, K.; Gu, L.; Zhang, Y.; Duan, Z.; Huang, Z.; Chen, H.; Han, W. Construction of a cathodic MOF/FeOOH heterojunction for boosted Fe(III) reduction in electro-Fenton processes. Appl. Catal. B Environ. Energy 2025, 362, 124770. [Google Scholar] [CrossRef]
- Yang, C.; Shang, S.; Lin, L.; Wang, P.; Ye, Z.; Wang, Y.; Shih, K.; Sun, L.; Li, X.-Y. Electro-driven cycling Fenton catalysis through two-dimensional electroresponsive metal–organic frameworks for water purification. Nat. Water 2024, 2, 793–802. [Google Scholar] [CrossRef]
- Pei, S.; Wang, S.; Lu, Y.; Li, X.; Wang, B. Application of metal-based catalysts for Fenton reaction: From homogeneous to heterogeneous, from nanocrystals to single atom. Nano Res. 2024, 17, 9446–9471. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, L.; Sun, X.; Dong, H.; Yu, H.; Yu, H. Radical and non-radical cooperative degradation in metal-free electro-Fenton based on nitrogen self-doped biochar. J. Hazard. Mater. 2022, 435, 129063. [Google Scholar] [CrossRef]
- Liu, Z.; Su, R.; Xu, F.; Xu, X.; Gao, B.; Li, Q. The Unique Fe3Mo3N structure bestowed efficient Fenton-like performance of the iron-based catalysts: The double enhancement of radicals and nonradicals. Adv. Mater. 2024, 36, 2311869. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Fan, Z.; Mo, D.; Yang, S.; Li, Y.; Tao, E. Construction of multi-pathway electron transfer channel: Mechanism on non-radical to radical promotion in electrocatalysis. Chem. Eng. J. 2025, 504, 159067. [Google Scholar] [CrossRef]
- Luo, T.; Feng, H.; Tang, L.; Lu, Y.; Tang, W.; Chen, S.; Yu, J.; Xie, Q.; Ouyang, X.; Chen, Z. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway. Chem. Eng. J. 2020, 382, 122970. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Q.; Chen, Y.; Guo, T.; Zhang, Y.; Huang, Z.; Hu, H.; Gan, T. Single-atom Fe catalysts anchored on graphitized chitin-derived carbon for improved anti-interference ability of Fenton-like reaction via non-radical pathway. Appl. Surf. Sci. 2024, 660, 160020. [Google Scholar] [CrossRef]
- Qi, H.; Shi, X.; Liu, Z.; Yan, Z.; Sun, Z. In situ etched graphite felt modified with CuFe2O4/Cu2O/Cu catalyst derived from CuFe PBA for the efficient removal of sulfamethoxazole through a heterogeneous electro-Fenton process. Appl. Catal. B Environ. 2023, 331, 122722. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Shen, Z.; Yan, X.; Niu, C.; Zeng, Q.; Wang, J.; Liu, Y. Trimetallic synergy of Fe-Co-Mo cathode for efficient non-radical degradation in a heterogeneous photo-electro-Fenton process. Chem. Eng. J. 2025, 506, 159890. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Kong, D.; Chen, X. FeCN/MXene as novel heterogeneous electro-Fenton catalysts for the degradation of sulfathiazole: Performance and mechanism investigation. J. Environ. Sci. 2025, 154, 300–313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhao, Y.; Bai, Y.; Song, J.; Sun, G. Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation. Catalysts 2025, 15, 549. https://doi.org/10.3390/catal15060549
Huang L, Zhao Y, Bai Y, Song J, Sun G. Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation. Catalysts. 2025; 15(6):549. https://doi.org/10.3390/catal15060549
Chicago/Turabian StyleHuang, Lu, Yufeng Zhao, Yu Bai, Junxi Song, and Guojin Sun. 2025. "Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation" Catalysts 15, no. 6: 549. https://doi.org/10.3390/catal15060549
APA StyleHuang, L., Zhao, Y., Bai, Y., Song, J., & Sun, G. (2025). Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation. Catalysts, 15(6), 549. https://doi.org/10.3390/catal15060549