Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Study of Bi2O3 and Mg-Doped Bi2O3
2.2. UV–Visible Spectroscopy
2.3. Photocatalytic Activity
2.4. Kinetics Study for the Degradation of MB
3. Materials and Methods
3.1. Synthesis of Mg-Doped Bismuth Oxide NPs
3.2. Characterization
3.3. Photocatalytic Performance of Bi2−xMgxO3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboraia, A.M.; Al-omoush, M.; Solayman, M.; Saad, H.M.H.; Khabiri, G.; Saad, M.; Alsulaim, G.M.; Soldatov, A.V.; Ismail, Y.A.M.; Gomaa, H. A heterostructural MoS2QDs@UiO-66 nanocomposite for the highly efficient photocatalytic degradation of methylene blue under visible light and simulated sunlight. RSC Adv. 2023, 13, 34598–34609. [Google Scholar] [CrossRef] [PubMed]
- Aboraia, A.M.; Almohammedi, A.; Alraddadi, S.; Taha, S.A.; Saad, M.; Sharaf, I.; Ismail, Y.A.M. Comparison study between as-synthesized ZnO and ZnO derived from ZiF-8 metalorganic framework in removing methylene blue. Mod. Phys. Lett. B 2024, 38, 2450221. [Google Scholar] [CrossRef]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy. NPJ Clean Water 2022, 5, 12. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mohamed, A.A. Recent progress in semiconductor/graphene photocatalysts: Synthesis, photocatalytic applications, and challenges. RSC Adv. 2023, 13, 421–439. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Iqbal, M.; Nadeem, M.A.; Hussain, I.; Yousaf, S.; Mustafa, G.; Zafar, M.I.; Nadeem, M.A. Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J. Environ. Chem. Eng. 2016, 4, 2138–2146. [Google Scholar] [CrossRef]
- Tudor, M.; Borlan, R.; Maniu, D.; Astilean, S.; de la Chapelle, M.L.; Focsan, M. Plasmon-enhanced photocatalysis: New horizons in carbon dioxide reduction technologies. Sci. Total Environ. 2024, 932, 172792. [Google Scholar] [CrossRef]
- Malathy, P.; Vignesh, K.; Rajarajan, M.; Suganthi, A. Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticles under visible light irradiation. Ceram. Int. 2014, 40, 101–107. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Li, D.; Gao, D.; Shi, J. Preparation and Photocatalytic Activity of Ag Modified Ti-Doped-Bi2O3 Photocatalyst. Adv. Condens. Matter Phys. 2014, 2014, 749354. [Google Scholar]
- Mane, V.; Dake, D.; Raskar, N.; Sonpir, R.; Stathatos, E.; Dole, B. A review on Bi2O3 nanomaterial for photocatalytic and antibacterial applications. Chem. Phys. Impact 2024, 8, 100517. [Google Scholar] [CrossRef]
- Dou, W.; Hu, X.; Kong, L.; Peng, X. Photo-induced dissolution of Bi2O3 during photocatalysis reactions: Mechanisms and inhibition method. J. Hazard. Mater. 2021, 412, 125267. [Google Scholar] [CrossRef]
- He, W.; Sun, Y.; Jiang, G.; Huang, H.; Zhang, X.; Dong, F. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: Photocatalysis mechanism and reaction pathway. Appl. Catal. B Environ. 2018, 232, 340–347. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.Z. Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev. 2009, 253, 3015–3041. [Google Scholar] [CrossRef]
- Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.; Liu, X. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef] [PubMed]
- Phung, N.; Félix, R.; Meggiolaro, D.; Al-Ashouri, A.; Sousa e Silva, G.; Hartmann, C.; Hidalgo, J.; Köbler, H.; Mosconi, E.; Lai, B. The doping mechanism of halide perovskite unveiled by alkaline earth metals. J. Am. Chem. Soc. 2020, 142, 2364–2374. [Google Scholar] [CrossRef]
- Duan, X.; Liu, N. Magnesium for dynamic nanoplasmonics. Acc. Chem. Res. 2019, 52, 1979–1989. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, W.; Ding, D.; Liu, M.; Ciucci, F.; Tade, M.; Shao, Z. Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements. Adv. Energy Mater. 2015, 5, 1500537. [Google Scholar] [CrossRef]
- Zhong, F.-G.; Huang, X.-Y.; Barreto, R.; Chen, S.-H. Synthetization and photocatalytic performance of high-aspect-ratio β-Bi2O3 nanowires via the combination of vacuum die-casting and controllable oxidation processes in liquid phase. Ceram. Int. 2025, 12, 15802–15808. [Google Scholar] [CrossRef]
- Li, J.; Fu, M.; Wu, Z.; Chu, P.; Wei, C.; Zhang, Y.; Huang, M.; Yang, Y.; He, D.; Wang, Y. Versatile fabrication of spherical inverse opals from diverse materials including Bi2O2/g-C2N4 and MXene/H-TiO2 using hierarchical microspheres as templates. Ceram. Int. 2024, 5, 6253–6263. [Google Scholar]
- Chavan, K.M.; Mane, V.A.; Raskar, N.D.; Dake, D.V.; Sonpir, R.B.; Dole, B.N. Nanostructured MnO2-Based Zn-Doped Bi2O3 Nanocomposite for Improved Antimicrobial and Photocatalytic Applications. ChemistrySelect 2024, 9, e202403806. [Google Scholar] [CrossRef]
- Fedyaeva, O.N.; Grebennikov, A.P.; Vostrikov, A.A. The role of water in the oxidation of lead and bismuth by high-density water-oxygen fluid. J. Supercrit. Fluids 2025, 218, 106509. [Google Scholar] [CrossRef]
- Li, L.; Yan, B. BiVO4/Bi2O3 submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation. J. Alloys Compd. 2009, 476, 624–628. [Google Scholar] [CrossRef]
- Jing, L.; Wang, J.; Qu, Y.; Luan, Y. Effects of surface-modification with Bi2O3 on the thermal stability and photoinduced charge property of nanocrystalline anatase TiO2 and its enhanced photocatalytic activity. Appl. Surf. Sci. 2009, 256, 657–663. [Google Scholar] [CrossRef]
- Hameed, A.; Gombac, V.; Montini, T.; Felisari, L.; Fornasiero, P. Photocatalytic activity of zinc modified Bi2O3. Chem. Phys. Lett. 2009, 483, 254–261. [Google Scholar] [CrossRef]
- Anandan, S.; Lee, G.-J.; Chen, P.-K.; Fan, C.; Wu, J.J. Removal of Orange II Dye in Water by Visible Light Assisted Photocatalytic Ozonation Using Bi2O3 and Au/Bi2O3 Nanorods. Ind. Eng. Chem. Res. 2010, 49, 9729–9737. [Google Scholar] [CrossRef]
- Xie, J.; Lü, X.; Chen, M.; Zhao, G.; Song, Y.; Lu, S. The synthesis, characterization and photocatalytic activity of V(V), Pb(II), Ag(I) and Co(II)-doped Bi2O3. Dye. Pigment. 2008, 77, 43–47. [Google Scholar] [CrossRef]
- Hou, Y.; An, X.; An, W.; Wang, H.; Hu, J.; Cui, W. Oxygen vacancy-enhanced magnesium-doped ferrous molybdate photocatalytic-peroxymonosulfate synergistic degradation of pollutants. Appl. Surf. Sci. 2024, 645, 158908. [Google Scholar] [CrossRef]
- Hao, L.; Huang, H.; Zhang, Y.; Ma, T. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919. [Google Scholar] [CrossRef]
- Abou-Gamra, Z.M.; Ahmed, M.A. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B Biol. 2016, 160, 134–141. [Google Scholar] [CrossRef]
- Zhang, X.; Sathiyaseelan, A.; Zhang, L.; Lu, Y.; Jin, T.; Wang, M.-H. Zirconium and cerium dioxide fabricated activated carbon-based nanocomposites for enhanced adsorption and photocatalytic removal of methylene blue and tetracycline hydrochloride. Environ. Res. 2024, 261, 119720. [Google Scholar] [CrossRef]
- Trandafilović, L.V.; Jovanović, D.J.; Zhang, X.; Ptasińska, S.; Dramićanin, M.D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles. Appl. Catal. B Environ. 2017, 203, 740–752. [Google Scholar] [CrossRef]
- Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Chanu, L.A.; Singh, W.J.; Singh, K.J.; Devi, K.N. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys. 2019, 12, 1230–1237. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, G.; Peng, J.; Wei, X.; Hojamberdiev, M.; Jin, L.; Liu, P. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation. Appl. Surf. Sci. 2015, 351, 260–269. [Google Scholar] [CrossRef]
- Yahia, I.S.; Shapaan, M.; Ismail, Y.A.M.; Aboraia, A.M.; Shaaban, E.R. Thickness dependence of structural and optical properties of cadmium iodide thin films. J. Alloys Compd. 2015, 636, 317–322. [Google Scholar] [CrossRef]
- Singh, S.; Sahoo, R.K.; Shinde, N.M.; Yun, J.M.; Mane, R.S.; Kim, K.H. Synthesis of Bi2O3-MnO2 nanocomposite electrode for wide-potential window high performance supercapacitor. Energies 2019, 12, 3320. [Google Scholar] [CrossRef]
- Aboraia, A.M.; Yahia, I.S.; Saad, M.; Alsulaim, G.; Alnahdi, K.M.; Alsharif, S.A.; Elewa, N.N.; Ismail, Y.A.M.; Mostafa khalefa, M.; Madkhali, N.; et al. Exploration of the structural rGO thin films and their optical characteristics for optoelectronic device applications. J. Opt. 2024. [Google Scholar] [CrossRef]
- Wang, R.; Chu, C.; Wang, L.; Liu, Q. Investigation of the photocatalytic performance of Mg-doped modified BiOCl. Inorg. Chem. Commun. 2023, 157, 111286. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63, 1909–1920. [Google Scholar] [CrossRef]
- Aboraia, A.M.; Sharaf, I.M.; Saad, M.; Alsulaim, G.; Alnahdi, K.M.; Elewa, N.N.; Khalefa, M.M.; Ismail, Y.A.M. Exploring the photocatalytic characteristics of samarium doping on the structural and morphological attributes and photocatalytic performance of zirconium dioxide. Mod. Phys. Lett. B 2024, 39, 2450503. [Google Scholar] [CrossRef]
- Alharshan, G.A.; Aboraia, A.M.; Uosif, M.A.M.; Sharaf, I.M.; Shaaban, E.R.; Saad, M.; Almohiy, H.; Elsenety, M.M. Optical band gap tuning, DFT understandings, and photocatalysis performance of ZnO nanoparticle-doped Fe compounds. Materials 2023, 16, 2676. [Google Scholar] [CrossRef] [PubMed]
Samples | 2θ, ° | D-Crystalline Size (nm) | Microstrain (ε) | Dislocation Density × 10−4 (nm−2) | Bandgap Energy (eV) |
---|---|---|---|---|---|
Bi2O3 | 27.943 29.076 31.393 32.772 32.772 45.852 47.015 53.599 55.408 57.453 74.290 | 79.7 | 74.23 | 1.8145 | 3.8 |
Mg0.025Bi1.975O3 | 27.943 29.076 31.393 32.772 32.772 45.852 47.015 53.599 55.408 57.453 74.290 | 18.1 | 36.741 | 7.407 | 3.08 |
Mg0.05Bi1.95O3 | 27.943 29.076 31.393 32.772 32.772 45.852 47.015 53.599 55.408 57.453 74.290 | 43.9 | 35.307 | 8.0217 | 3.13 |
Mg0.075Bi1.925O3 | 27.943 29.076 31.393 32.772 32.772 45.852 47.015 53.599 55.408 57.453 74.290 | 27.2 | 45.096 | 4.91714 | 3.3 |
Mg0.1Bi1.9O3 | 27.943 29.076 31.393 32.772 32.772 45.852 47.015 53.599 55.408 57.453 74.290 | 12.3 | 29.542 | 0.00115 | 3.14 |
Samples | Removal Efficiency, % | k | R2 |
---|---|---|---|
Bi2O3 | 73 | 0.0105 | 0.96 |
Mg0.025Bi1.975O3 | 91 | 0.02 | 0.979 |
Mg0.05Bi1.95O3 | 82 | 0.0146 | 0.995 |
Mg0.075Bi1.925O3 | 92 | 0.0182 | 0.98 |
Mg0.1Bi1.9O3 | 93 | 0.0217 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf, I.M.; Koubisy, M.S.I.; Alkallas, F.H.; Trabelsi, A.B.G.; Aboraia, A.M. Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution. Catalysts 2025, 15, 519. https://doi.org/10.3390/catal15060519
Sharaf IM, Koubisy MSI, Alkallas FH, Trabelsi ABG, Aboraia AM. Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution. Catalysts. 2025; 15(6):519. https://doi.org/10.3390/catal15060519
Chicago/Turabian StyleSharaf, Ibrahim M., Mohamed S. I. Koubisy, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, and Abdelaziz Mohamed Aboraia. 2025. "Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution" Catalysts 15, no. 6: 519. https://doi.org/10.3390/catal15060519
APA StyleSharaf, I. M., Koubisy, M. S. I., Alkallas, F. H., Trabelsi, A. B. G., & Aboraia, A. M. (2025). Tailoring β-Bi2O3 Nanoparticles via Mg Doping for Superior Photocatalytic Activity and Hydrogen Evolution. Catalysts, 15(6), 519. https://doi.org/10.3390/catal15060519