Highly Stable Ni–Red Mud Catalysts for CO2-Free Hydrogen and Valuable Carbon from Natural Gas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Catalysts Prior to Reaction
2.2. Activity Performance
2.3. Characterizations of Catalysts Post Reaction
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zeng, H.; Liu, P.; Yu, J.; Guo, F.; Xu, G.; Zhang, Z. The recycle of red mud as excellent SCR catalyst for removal of NOx. RSC Adv. 2017, 7, 53622–53630. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Xu, Y.; Chen, Z.; Yin, F. Application of red mud as both neutralizer and catalyst in supercritical water oxidation (SCWO) disposal of sewage sludge. RSC Adv. 2016, 6, 54202–54214. [Google Scholar] [CrossRef]
- Sushil, S.; Batra, V.S. Catalytic applications of red mud, an aluminium industry waste: A review. Appl. Catal. B Environ. 2008, 81, 64–77. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Sun, P.; Zhai, P.; Chen, X.; Zhang, H.; Zhang, Z.; Zhu, W. Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chem. Eng. J. 2017, 321, 622–634. [Google Scholar] [CrossRef]
- Kim, S.C.; Nahm, S.W.; Park, Y.-K. Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds. J. Hazard. Mater. 2015, 300, 104–113. [Google Scholar] [CrossRef]
- Pepper, R.A.; Couperthwaite, S.J.; Millar, G.J. Value adding red mud waste: High performance iron oxide adsorbent for removal of fluoride. J. Environ. Chem. Eng. 2017, 5, 2200–2206. [Google Scholar] [CrossRef]
- Shim, W.G.; Nah, J.W.; Jung, H.-Y.; Park, Y.-K.; Jung, S.C.; Kim, S.C. Recycling of red mud as a catalyst for complete oxidation of benzene. J. Ind. Eng. Chem. 2018, 60, 259–267. [Google Scholar] [CrossRef]
- Teixeira, I.F.; Medeiros, T.P.V.; Freitas, P.E.; Rosmaninho, M.G.; Ardisson, J.D.; Lago, R.M. Carbon deposition and oxidation using the waste red mud: A route to store, transport and use offshore gas lost in petroleum exploration. Fuel 2014, 124, 7–13. [Google Scholar] [CrossRef]
- Sushil, S.; Alabdulrahman, A.M.; Balakrishnan, M.; Batra, V.S.; Blackley, R.A.; Clapp, J.; Hargreaves, J.S.J.; Monaghan, A.; Pulford, I.D.; Rico, J.L. Carbon deposition and phase transformations in red mud on exposure to methane. J. Hazard. Mater. 2010, 180, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.; Blackley, R.A.; Flowers, T.H.; Hargreaves, J.S.J.; Pulford, I.D.; Wigzell, J.; Zhou, W. Iron ochre-a pre-catalyst for the cracking of methane. J. Chem. Technol. Biotechnol. 2014, 89, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.X.; Chen, T.W.; Enakonda, L.R.; Bin Liu, D.; Basset, J.-M.; Zhou, L. Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives. Int. J. Hydrogen Energy 2020, 45, 15721–15743. [Google Scholar] [CrossRef]
- Qian, J.X.; Chen, T.W.; Enakonda, L.R.; Bin Liu, D.; Mignani, G.; Basset, J.-M.; Zhou, L. Methane decomposition to produce CO-free hydrogen and nano-carbon over metal catalysts: A review. Int. J. Hydrogen Energy 2020, 45, 7981–8001. [Google Scholar] [CrossRef]
- Khan, W.U.; Al Shoaibi, A.; Chandrasekar, S.; Hossain, M.M. Synthesis of COx-free hydrogen via natural gas decomposition over titanium dioxide-supported bimetallic catalysts. Int. J. Hydrogen Energy 2023, 48, 31224–31233. [Google Scholar] [CrossRef]
- Khan, W.U.; Hantoko, D.; Bakare, I.A.; Al Shoaibi, A.; Chandrasekar, S.; Hossain, M.M. Co-Ni on zirconia and titania catalysts for methane decomposition to hydrogen and carbon nanomaterials: The role of metal-support interactions. Fuel 2024, 369, 131675. [Google Scholar] [CrossRef]
- Hantoko, D.; Khan, W.U.; Osman, A.I.; Nasr, M.; Rashwan, A.K.; Gambo, Y.; Al Shoaibi, A.; Chandrasekar, S.; Hossain, M.M. Carbon–neutral hydrogen production by catalytic methane decomposition: A review. Environ. Chem. Lett. 2024, 22, 1623–1663. [Google Scholar] [CrossRef]
- Karaismailoğlu, M.; Figen, H.E.; Baykara, S.Z. Methane decomposition over Fe-based catalysts. Int. J. Hydrogen Energy 2020, 45, 34773–34782. [Google Scholar] [CrossRef]
- Takenaka, S. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J. Catal. 2004, 222, 520–531. [Google Scholar] [CrossRef]
- Reddy Enakonda, L.; Zhou, L.; Saih, Y.; Ould-Chikh, S.; Lopatin, S.; Gary, D.; Del-Gallo, P.; Basset, J.-M. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition. ChemSusChem 2016, 9, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Han, Z.; Hu, Y.; Cui, Y.; Yue, J.; Yu, J.; Xu, G. Methane Decomposition Kinetics over Fe2O3 Catalyst in Micro Fluidized Bed Reaction Analyzer. Ind. Amp. Eng. Chem. Res. 2018, 57, 8413–8423. [Google Scholar] [CrossRef]
- Yang, M.; Li, S.; Deng, Y.; Baeyens, J.; Zhang, H. Effect of Fe-loading in iron-based catalysts for the CH4 decomposition to H2 and nanocarbons. J. Environ. Manag. 2023, 346, 118999. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Si, H.; Zhang, J.; Lin, P.; Hu, Z.; Qiu, B.; Hu, H. Preparation of activated carbon supported Fe–Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 10373–10380. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Fakeeha, A.H.; Al-Fatesh, A.S.; Abasaeed, A.E.; Khan, W.U. Methane decomposition over iron catalyst for hydrogen production. Int. J. Hydrogen Energy 2015, 40, 7593–7600. [Google Scholar] [CrossRef]
- Inaba, M.; Zhang, Z.; Matsuoka, K.; Soneda, Y. Optimization of the reaction conditions for Fe-catalyzed decomposition of methane and characterization of the produced nanocarbon fibers. Catal. Today 2019, 332, 11–19. [Google Scholar] [CrossRef]
- Inaba, M.; Zhang, Z.; Matsuoka, K.; Soneda, Y. Effect of coexistence of siloxane on production of hydrogen and nanocarbon by methane decomposition using Fe catalyst. Int. J. Hydrogen Energy 2021, 46, 11556–11563. [Google Scholar] [CrossRef]
- Zhou, L.; Enakonda, L.R.; Harb, M.; Saih, Y.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.; Li, J.; Wei, N.; Gary, D.; et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Appl. Catal. B Environ. 2017, 208, 44–59. [Google Scholar] [CrossRef]
- Qian, J.X.; Enakonda, L.R.; Wang, W.J.; Gary, D.; Del-Gallo, P.; Basset, J.-M.; Liu, D.B.; Zhou, L. Optimization of a fluidized bed reactor for methane decomposition over Fe/Al2O3 catalysts: Activity and regeneration studies. Int. J. Hydrogen Energy 2019, 44, 31700–31711. [Google Scholar] [CrossRef]
- Keller, M.; Matsumura, A.; Sharma, A. Spray-dried Fe/Al2O3 as a carbon carrier for COx-free hydrogen production via methane cracking in a fluidized bed process. Chem. Eng. J. 2020, 398, 125612. [Google Scholar] [CrossRef]
- Keller, M.; Sharma, A. Hydrogen Production via Methane Cracking on Dry-Coated Fe/ZrO2 with Support Recycle in a Fluidized Bed Process. Energy Amp. Fuels 2020, 35, 847–855. [Google Scholar] [CrossRef]
- Dunens, O.M.; MacKenzie, K.J.; Harris, A.T. Synthesis of multi-walled carbon nanotubes on ‘red mud’ catalysts. Carbon 2010, 48, 2375–2377. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Batra, V.S.; Hargreaves, J.S.J.; Monaghan, A.; Pulford, I.D.; Rico, J.L.; Sushil, S. Hydrogen production from methane in the presence of red mud–making mud magnetic. Green Chem. 2009, 11, 42–47. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Q.; Li, P.; Li, H.; Li, F.; Huang, G. A Nanomesoporous Catalyst from Modified Red Mud and Its Application for Methane Decomposition to Hydrogen Production. J. Nanomater. 2016, 2016, 6947636. [Google Scholar] [CrossRef]
- Geng, S.; Zhang, Z.; Li, J.; Qian, J.; Liu, J.; Yu, J.; Xu, G. Catalytic behavior in CH4 decomposition of catalysts derived from red mud: Impact of residual Na2O. Int. J. Hydrogen Energy 2022, 47, 7836–7845. [Google Scholar] [CrossRef]
- Wang, D.; Wang, D.; Yu, J.; Chen, Z.; Li, Y.; Gao, S. Role of alkali sodium on the catalytic performance of red mud during coal pyrolysis. Fuel Process. Technol. 2019, 186, 81–87. [Google Scholar] [CrossRef]
- Lin, S.; Gu, Z.; Zhu, X.; Wei, Y.; Long, Y.; Yang, K.; He, F.; Wang, H.; Li, K. Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion. Energy 2020, 197, 117202. [Google Scholar] [CrossRef]
- Cabello, A.; Dueso, C.; García-Labiano, F.; Gayán, P.; Abad, A.; de Diego, L.F.; Adánez, J. Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit. Fuel 2014, 121, 117–125. [Google Scholar] [CrossRef]
- Huang, R.; Fukanuma, H.; Uesugi, Y.; Tanaka, Y. Comparisons of Two Models for the Simulation of a DC Arc Plasma Torch. J. Therm. Spray Technol. 2013, 22, 183–191. [Google Scholar] [CrossRef]
- Hossain, M.M.; Ahmed, S. Cu-based mixed metal oxide catalysts for WGSR: Reduction kinetics and catalytic activity. Can. J. Chem. Eng. 2013, 91, 1450–1458. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Reduction and oxidation kinetics of Co–Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles. Chem. Eng. Sci. 2010, 65, 98–106. [Google Scholar] [CrossRef]
- Richardson, J.T.; Scates, R.M.; Twigg, M. V X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts. Appl. Catal. A Gen. 2004, 267, 35–46. [Google Scholar] [CrossRef]
- Michael, E.B. Introduction to Thermal Analysis; Chapman and Hall Ltd.: London, UK, 1998. [Google Scholar]
- Hossain, M.M.; Quddus, M.R.; de Lasa, H.I. Reduction Kinetics of La Modified NiO/La-γAl2O3 Oxygen Carrier for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2010, 49, 11009–11017. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC. AIChE J. 2007, 53, 1817–1829. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydrogen Energy 2020, 45, 26979–26988. [Google Scholar] [CrossRef]
- Małecka, B.; Drożdż-Cieśla, E.; Małecki, A. Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim. Acta 2004, 423, 13–18. [Google Scholar] [CrossRef]
- Rynkowski, J.M.; Paryjczak, T.; Lenik, M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl. Catal. A Gen. 1993, 106, 73–82. [Google Scholar] [CrossRef]
- Jin, H.; Okamoto, T.; Ishida, M. Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO−NiO. Energy Fuels 1998, 12, 1272–1277. [Google Scholar] [CrossRef]
- Khan, W.U.; Alasiri, H.S.; Ali, S.A.; Hossain, M.M. Recent Advances in Bimetallic Catalysts for Hydrogen Production from Ammonia. Chem. Rec. 2022, 22, e202200030. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Barama, S.; Ibrahim, A.A.; Barama, A.; Khan, W.U.; Fakeeha, A. Study of Methane Decomposition on Fe/MgO-Based Catalyst Modified by Ni, Co, and Mn Additives. Chem. Eng. Commun. 2017, 204, 739–749. [Google Scholar] [CrossRef]
No. | Mechanism | Model Formulation |
---|---|---|
1 | Random nucleation | |
2 | Power law model | |
3 | Avrami–Erofeev model | |
4 | Two-dimensional nuclei growth * | |
5 | Three-dimensional nuclei growth ** |
Catalyst Sample | (kJ/mol) | × 103 | γ* | R2 |
---|---|---|---|---|
PRM | 109 ± 0.12 | 480 ± 0.7 | −0.85 | 0.999 |
10Ni-PRM | 87 ± 0.19 | 910 ± 0.2 | −0.63 | 0.998 |
15Ni-PRM | 84 ± 0.14 | 730 ± 0.2 | −0.74 | 0.999 |
20Ni-PRM | 83 ± 0.13 | 670 ± 0.1 | −0.77 | 0.999 |
Catalyst | Operating Conditions | Activity | Ref. | ||
---|---|---|---|---|---|
Reaction Temperature (°C) | GHSV (L/h·gcat) | Max. Methane Conversion (%) | Max. Hydrogen Rate (µmol/g/s) | ||
RM4 | 800 | 9 | 19.8 | 18 | [30] |
RM6 | - | 7.7 | |||
RM7 | - | 3.5 | |||
Geothite | 800 | 9 | - | 5.7 | [9] |
RM7 | - | 5.7 | |||
DW1 | 750 | 12 | 16.8 | 11.5 | [32] |
DW3 | 17.6 | 12.0 | |||
DW6 | 18.7 | 12.7 | |||
Dry RM | 800 | 4.8 | 21.2 | 5.8 | [31] |
MRM | 25.0 | 6.8 | |||
20Ni-PRM | 700 | 5 | 75 * | 19.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.U.; Hantoko, D.; Nasser, G.; Bakare, A.I.; Al Shoaibi, A.; Chandrasekar, S.; Hossain, M.M. Highly Stable Ni–Red Mud Catalysts for CO2-Free Hydrogen and Valuable Carbon from Natural Gas. Catalysts 2025, 15, 161. https://doi.org/10.3390/catal15020161
Khan WU, Hantoko D, Nasser G, Bakare AI, Al Shoaibi A, Chandrasekar S, Hossain MM. Highly Stable Ni–Red Mud Catalysts for CO2-Free Hydrogen and Valuable Carbon from Natural Gas. Catalysts. 2025; 15(2):161. https://doi.org/10.3390/catal15020161
Chicago/Turabian StyleKhan, Wasim Ullah, Dwi Hantoko, Galal Nasser, Akolade Idris Bakare, Ahmed Al Shoaibi, Srinivasakannan Chandrasekar, and Mohammad M. Hossain. 2025. "Highly Stable Ni–Red Mud Catalysts for CO2-Free Hydrogen and Valuable Carbon from Natural Gas" Catalysts 15, no. 2: 161. https://doi.org/10.3390/catal15020161
APA StyleKhan, W. U., Hantoko, D., Nasser, G., Bakare, A. I., Al Shoaibi, A., Chandrasekar, S., & Hossain, M. M. (2025). Highly Stable Ni–Red Mud Catalysts for CO2-Free Hydrogen and Valuable Carbon from Natural Gas. Catalysts, 15(2), 161. https://doi.org/10.3390/catal15020161