Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting
Abstract
1. Introduction
2. Results and Discussion
2.1. Coatings, Microstructure and Morphology Studies
2.2. Electrocatalytic Activity Towards HER
2.3. Electrocatalytic Activity Towards OER
2.4. Determination of Electrochemically Active Surface Areas
2.5. Investigation of Stability of Catalysts
2.6. Investigation of Overall Water Splitting
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of Catalysts
- Pretreatment: The Cu substrate was pretreated with calcium magnesium oxide and subsequently rinsed with deionized water (DI).
- Decapitation: The substrate was immersed in a HCl:H2O (1:1, v/v) solution for 1 min at 25 °C, followed by rinsing with DI.
- Activation: The cleaned Cu substrate was activated via immersion in a 0.5 g L−1 PdCl2 solution for 1 min at 25 °C, and then rinsed with DI.
- Electroless deposition:
- (i)
- For CoP deposition, the Pd-activated Cu substrate was immersed in a plating bath containing 0.1 M CoSO4, 0.6 M glycine, and 0.75 M NaH2PO2 (pH = 11) for 30 min at 60 °C.
- (ii)
- For CoFeP deposition, the same plating bath was used with the addition of 0.01 M FeSO4.
3.3. Characterization of Catalysts
3.4. Evaluation of Catalysts Activity for HER and OER
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Wang, Y.; Huang, Y.C.; Wei, Z.; Dong, C.L.; Ma, J.; Shen, S.; Li, Y.; Wang, S. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569. [Google Scholar] [CrossRef]
- Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Recent progress in cobalt—Based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef]
- Liu, H.; He, P.; Wang, S.; Gao, J.; Zhou, L.; Li, C.; Zhang, Y.; Yang, D.; He, M.; Jia, L.; et al. Facile one-step fabrication of bimetallic Co–Ni–P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 44, 24140–24150. [Google Scholar] [CrossRef]
- Pilavachi, P.A.; Chatzipanagi, A.I.; Spyropoulou, A.I. Evaluation of hydrogen production methods using the analytic hierarchy process. Int. J. Hydrog. Energy 2009, 34, 5294–5303. [Google Scholar] [CrossRef]
- Kim, H.; Oh, S.; Cho, E.; Kwon, H. 3D porous cobalt–iron–phosphorus bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions. ACS Sustain. Chem. Engineer. 2018, 6, 6305–6311. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Wang, S.; He, P.; Jia, L.; He, M.; Zhang, T.; Dong, F.; Liu, M.; Liu, H.; Zhang, Y.; Li, C.; et al. Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: A highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B Environ. 2019, 243, 463–469. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, C.; Liu, D.; Huang, X.; Huo, J.; Wang, S. Nanoparticle-stacked porous nickel–iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interf. 2016, 8, 18652–18657. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhang, C.; Gao, H.; Lv, L.; Han, L.; Zhang, Z. Self-supported porous NiSe2 nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting. ACS Sustain. Chem. Engineer. 2018, 6, 2231–2239. [Google Scholar] [CrossRef]
- Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 2023, 6, e12441. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Mahmood, N.; Yao, Y.; Zhang, J.W.; Pan, L.; Zhang, X.; Zou, J.J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef]
- Huang, G.; Xiao, Z.; Chen, R.; Wang, S. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustain. Chem. Eng. 2018, 6, 15954–15969. [Google Scholar] [CrossRef]
- You, B.; Tang, M.T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001. [Google Scholar] [CrossRef]
- Wu, D.; Wei, Y.; Ren, X.; Ji, X.; Liu, Y.; Guo, X.; Liu, Z.; Asiri, A.M.; Wei, Q.; Sun, X. Co (OH)2 nanoparticle—Encapsulating conductive nanowires array: Room—Temperature electrochemical preparation for high—Performance water oxidation electrocatalysis. Adv. Mater. 2018, 30, 1705366. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, L.; Liu, Z.; Du, G.; Asiri, A.M.; Sun, X. A Zn-doped Ni3 S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun. 2017, 53, 12446–12449. [Google Scholar] [CrossRef]
- Jiang, N.; You, B.; Sheng, M.; Sun, Y. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. 2015, 127, 6349–6352. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water—Splitting. Angew. Chem. Int. Ed. 2016, 55, 6290–6294. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.Q.; Wu, C.Y.; Xiao, K.; Liu, Z.Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, X.; Ren, H.; Chi, J.; Fu, H.; Dong, B.; Liu, C.; Chai, Y. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107. [Google Scholar] [CrossRef]
- Esposito, D.V.; Hunt, S.T.; Stottlemyer, A.L.; Dobson, K.D.; McCandless, B.E.; Birkmire, R.W.; Chen, J.G. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chemie Int. Ed. 2010, 51, 9859–9862. [Google Scholar] [CrossRef]
- Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, Y.; Lu, R.; Ma, C.; Wang, Z.; Han, Y.; Wang, D. Optimal selection of RuO2 for durable oxygen evolution reactions in acidic media by continuous regulation of Ru–O covalency. Energy Environ. Sci. 2025, 18, 4200–4209. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Zhang, G.; Yang, G.; Yang, T.; Yang, S.; Yang, S. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 2020, 10, 2001600. [Google Scholar] [CrossRef]
- Fan, J.; Qi, K.; Zhang, L.; Zhang, H.; Yu, S.; Cui, X. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl. Mater. Interf. 2017, 9, 18008–18014. [Google Scholar] [CrossRef]
- Nsanzimana, J.M.V.; Peng, Y.; Xu, Y.Y.; Thia, L.; Wang, C.; Xia, B.Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, X.Y.; Xie, J.Y.; Dong, B.; Chi, J.Q.; Guo, B.Y.; Yang, M.; Chai, Y.M.; Liu, C.G. Double-catalytic-site engineering of nickel-based electrocatalysts by group VB metals doping coupling with in-situ cathodic activation for hydrogen evolution. Appl. Catal. B Environ. 2019, 258, 117984. [Google Scholar] [CrossRef]
- Du, C.F.; Liang, Q.; Dangol, R.; Zhao, J.; Ren, H.; Madhavi, S.; Yan, Q. Layered trichalcogenidophosphate: A new catalyst family for water splitting. Nano-Micro Lett. 2018, 10, 67. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Fareed, I.; Khan, M.D.; Murtaza, S.; Farooq Mu, H.; Rehman, Z.U.; Farooq, M.U.; Butt, F.K.; Tahir, M. Investigating metal (M = Mn, Fe, and Ni) doped Co(OH)2 nanofibers for electrocatalytic oxygen evolution and electrochemical biosensing performance. RSC Adv. 2024, 14, 26556–26567. [Google Scholar] [CrossRef]
- Linke, J.; Rohrbach, T.; Clark, A.H.; Borca, C.; Huthwelker, T.; Buchauer, F.L.; Kraglund, M.R.; Chatzichristodoulou, C.; Meade, E.; Guehl, J.; et al. The role of Fe incorporation into Ni-MOF-74 derived oxygen evolution electrocatalysts for anion exchange membrane water electrolysis. EES Catal. 2025, 3, 505–514. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Guo, Y.; Ding, J.; Lu, Z. Preparation of S-doped Ni-Mn-Fe layered hydroxide for high performance of oxygen evolution reaction. Coatings 2025, 15, 825. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J. Recent developments in manganese-based materials for acidic oxygen evolution catalysis. Korean J. Chem. Eng. 2025, 1–15. [Google Scholar] [CrossRef]
- Ahmed, K.W.; Fowler, M. Performance evaluation and durability analysis of NiFeCoOₓ catalysts for alkaline water electrolysis in anion exchange membrane electrolyzers. Catalysts 2024, 14, 322. [Google Scholar] [CrossRef]
- Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313. [Google Scholar] [CrossRef]
- Guan, M.; Fu, S.; Qin, F.; Zuo, P.; Shen, W. Urchin-like bifunctional CoP/FeP electrocatalyst for overall water splitting. Int. J. Hydrog. Energy 2024, 93, 147–157. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Li, C.; Pham, B.T.; Zhang, D. Electrodeposition of Ni–Fe–Mn ternary nanosheets as affordable and efficient electrocatalyst for both hydrogen and oxygen evolution reactions. Int. J. Hydrog. Energy 2020, 45, 24670–24683. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, D.; Ye, F.; Wang, K.; Shi, Z. Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrodes for water splitting. Int. J. Hydrog. Energy 2017, 42, 17038–17048. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Zhu, G.; Mao, Y.; Yu, Y.; Ju, S.; Shen, X.; Pang, H. Small sized Fe–Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2019, 7, 15851–15861. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Li, J.; Lin, X.; Li, X.; Fang, Y.; Huang, J.; Li, W.; Tian, M.; Jin, J.; et al. Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Power Sources 2015, 292, 15–22. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A.K.; Bhattacharyya, D.; Jha, S.N.; Miotello, A.; Kothari, D.C. Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B Environ. 2016, 192, 126–133. [Google Scholar] [CrossRef]
- Chen, M.; Xie, Y.; Wu, J.X.; Huang, H.; Teng, J.; Wang, D.; Fan, Y.; Jiang, J.J.; Wang, H.P.; Su, C.Y. Cobalt (oxy) hydroxide nanosheet arrays with exceptional porosity and rich defects as a highly efficient oxygen evolution electrocatalyst under neutral conditions. J. Mater. Chem. A 2019, 7, 10217–10224. [Google Scholar] [CrossRef]
- Babar, P.; Lokhande, A.; Shin, H.H.; Pawar, B.; Gang, M.G.; Pawar, S.; Kim, J.H. Cobalt iron hydroxide as a precious metal—Free bifunctional electrocatalyst for efficient overall water splitting. Small 2018, 14, 1702568. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Dang, L.; Zhang, H.; Wu, X.; Yang, B.; Li, Z.; Zhang, X.; Lei, L.; Jin, S. Amorphous cobalt–iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo—Electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904. [Google Scholar] [CrossRef]
- Wang, K.; She, X.; Chen, S.; Liu, H.; Li, D.; Wang, Y.; Zhang, H.; Yang, D.; Yao, X. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. J. Mater. Chem. A 2018, 6, 5560–5565. [Google Scholar] [CrossRef]
- Beltrán-Suito, R.; Menezes, P.W.; Driess, M. Amorphous outperforms crystalline nanomaterials: Surface modifications of molecularly derived CoP electro (pre) catalysts for efficient water-splitting. J. Mater. Chem. A 2019, 7, 15749–15756. [Google Scholar] [CrossRef]
- Amber, H.; Balčiūnaitė, A.; Sukackienė, Z.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Electrolessly deposited cobalt–phosphorus coatings for efficient hydrogen and oxygen evolution reactions. Catalysts 2024, 15, 8. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, C.; Zhu, X.; Yuan, K. Developing a cobalt phosphide catalyst with combined cobalt defects and phosphorus vacancies to boost oxygen evolution reaction. Materials 2024, 17, 4647. [Google Scholar] [CrossRef]
- Du, Y.; Zhong, Z.; Zhou, L.; Chen, W.; Shi, Z.; Song, P.; Liu, Y.; Yao, Y.; Liu, Y.; Dou Sh Xiao, Y. Coordination polymer derived transition metal phosphide/carbon composites for bifunctional oxygen electrocatalyst. J. Mater. Sci. Technol. 2025, 222, 142–151. [Google Scholar] [CrossRef]
- Zhang, T.; Zhong, J.; Gao, W.; Wang, Y. Interface engineering induced N, P doped carbon shell encapsulated FeP/NiP2/Ni5P4/NiP nanoparticles for highly efficient hydrogen evolution reaction. Coatings 2024, 14, 817. [Google Scholar] [CrossRef]
- Yadav, A.; Das, M.R.; Deka, S. Fine tuning of torus shaped Mo doped Ni2P nanorings for enhanced seawater electrolysis. Small 2025, 21, 2408036. [Google Scholar] [CrossRef]
- Parvanova-Mancheva, T.; Chakarova, V.; Gabrovska, M.; Atanasova-Vladimirova, S.; Baeva, A.; Andreeva, R.; Hodzhaoglu, F.; Nikolova, D. Evaluating the bifunctional properties towards HER and OER of NiCo electrodeposited coatings: Combined influence of support, Ni/Co ratio, and phosphorus doping. Catal. Today 2025, 460, 115495. [Google Scholar] [CrossRef]
- Thang, S.; Li, D.; Wu, X. Co0.4Fe1.6P electrocatalysts through Mo ion doping strategies for stable alkaline water splitting. Cryst. Eng. Comm. 2025, 27, 5319–5326. [Google Scholar] [CrossRef]
- Ren, P.; Wang, R.; Yang, Y.; Wang, T.; Hong, Y.; Zheng, Y.; Ren, X.; Jia, Z. Facile synthesis of MoP and its composite structure with Ru as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline conditions. Materials 2025, 18, 1184. [Google Scholar] [CrossRef]
- Xiao, L.; Bao, W.; Zhang, J.; Yang, C.; Ai, T.; Li, Y.; Wei, X.; Jiang, P.; Kou, L. Interfacial interaction between NiMoP and NiFe-LDH to regulate the electronic structure toward high-efficiency electrocatalytic oxygen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 9230–9238. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Kitiphatpiboon, N.; Chen, M.; Li, S.; Li, X.; Kongparakul, S.; Samart, C.; Zhang, L.; Abudula, A.; Guan, G. Multi-hierarchical porous Mn-doped CoP catalyst on nickel phosphide foam for hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 5, 149–158. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Li, C.; Wu, D.; Cheng, D.; Cao, D. Vertical CoP nanoarray wrapped by N, P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv. Energy Mater. 2019, 9, 1803970. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A.M.; Sun, X. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble—Metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53, 6710–6714. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; McElhenny, B.; Xing, X.; Luo, D.; Zhang, F.; Bao, J.; Chen, S.; Ren, Z. Rational design of core-shell-structured CoPx@ FeOOH for efficient seawater electrolysis. Appl. Catal. B Environ. 2021, 294, 120256. [Google Scholar] [CrossRef]
- Yang, C.; He, T.; Zhou, W.; Deng, R.; Hang, Q. Iron-tuned 3D cobalt–phosphate catalysts for efficient hydrogen and oxygen evolution reactions over a wide pH range. ACS Sustain. Chem. Engineer. 2020, 8, 13793–13804. [Google Scholar] [CrossRef]
- Lu, S.S.; Zhang, L.M.; Dong, Y.W.; Zhang, J.Q.; Yan, X.T.; Sun, D.F.; Shang, X.; Chi, J.Q.; Chai, Y.M.; Dong, B. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 16859–16866. [Google Scholar] [CrossRef]
- Muthurasu, A.; Ojha, G.P.; Lee, M.; Kim, H.Y. Integration of cobalt metal–organic frameworks into an interpenetrated prussian blue analogue to derive dual metal–organic framework-assisted cobalt iron derivatives for enhancing electrochemical total water splitting. J. Phys. Chem. C 2020, 124, 14465–14476. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, D.; Nie, Z.; Qiu, X.; Wang, S.; Yuan, J.; Su, D.; Wang, G.; Wu, Z. Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 571–579. [Google Scholar] [CrossRef]
- Tang, C.; Gan, L.; Zhang, R.; Lu, W.; Jiang, X.; Asiri, A.M.; Sun, X.; Wang, J.; Chen, L. Ternary FexCo1–x P nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617–6621. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Cheng, S.; Zuo, Y.; Wang, Y.; Ma, C.; Dong, H. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 1141–1153. [Google Scholar] [CrossRef]
- Agyapoma, A.L.; Jin, C.; Zhang, Q.; Zeng, X. Construction of self-supporting heterobimetallic phosphides for oxygen evolution reaction. Mater. Today Catal. 2025, 10, 100114. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398. [Google Scholar] [CrossRef]
- Cho, J.; Moon, J.; Jeong, K.; Cho, G. Application of PU-sealing into Cu/Ni electroless plated polyester fabrics for e-textiles. Fiber. Polym. 2007, 8, 330–334. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Zhou, Y.; Liang, A.; Zhang, J. Aluminum-induced direct electroless deposition of Co and Co-P coatings on copper and their catalytic performance for electrochemical water splitting. Surf. Coat. Technol. 2018, 352, 42–48. [Google Scholar] [CrossRef]
- Lin, C.C.; Chuang, C.C.; Li, X.H.; Chin, T.S.; Chang, J.Y.; Sung, C.K.; Wang, S.C. Ultrasound-assisted electroless deposition of Co-P hard magnetic films. Surf. Coat. Technol. 2020, 388, 125577. [Google Scholar] [CrossRef]
- Du, Y.; Qu, H.; Liu, Y.; Han, Y.; Wang, L.; Dong, B. Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media. Appl. Surf. Sci. 2019, 465, 816–823. [Google Scholar] [CrossRef]
- Zahra, R.; Pervaiz, E.; Baig, M.M.; Rabi, O. Three-dimensional hierarchical flowers-like cobalt-nickel sulfide constructed on graphitic carbon nitride: Bifunctional non-noble electrocatalyst for overall water splitting. Electrochim. Acta 2022, 418, 140346. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, W.; Sun, L.; Huo, L.; Zhao, H. Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. ChemSusChem 2019, 12, 3592–3601. [Google Scholar] [CrossRef]
- Kaya, D.; Isik, H.H.; Isik, I.B.; Sigircik, G.; Tuken, T.; Karadag, F.; Ekicibil, A. Electrocatalytic hydrogen evolution on metallic and bimetallic Pd-Co alloy nanoparticles. Int. J. Hydrog. Energy 2023, 48, 14633–14641. [Google Scholar] [CrossRef]
- Goryachev, A.; Gao, L.; Zhang, Y.; Rohling, R.Y.; Vervuurt, R.H.J.; Bol, A.A.; Hofmann, J.P.; Hensen, E.J.M. Stability of CoPx electrocatalysts in continuous and interrupted acidic electrolysis of water. ChemElectroChem 2018, 5, 1230–1239. [Google Scholar] [CrossRef]
- Li, C.; Peng, Z.; Huang, J. Impedance response of electrochemical interfaces: Part IV─Low-frequency inductive loop for a single-electron reaction. J. Phys. Chem. C 2023, 127, 16367–16373. [Google Scholar] [CrossRef]
- Levinas, R.; Tsyntsaru, N.; Lelis, M.; Cesiulis, H. Synthesis, electrochemical impedance spectroscopy study and photoelectrochemical behaviour of as-deposited and annealed WO3 films. Electrochim. Acta 2017, 225, 29–38. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interf. Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Trotochaud, L.; Ranney, J.K.; Williams, K.N.; Boettcher, S.W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261. [Google Scholar] [CrossRef]
- Chang, Y.; Shi, N.E.; Zhao, S.; Xu, D.; Liu, C.; Tang, Y.J.; Dai, Z.; Lan, Y.Q.; Han, M.; Bao, J. Coralloid Co2P2O7 nanocrystals encapsulated by thin carbon shells for enhanced electrochemical water oxidation. ACS Appl. Mater. Interf. 2016, 8, 22534–22544. [Google Scholar] [CrossRef]
- Liu, M.; Li, J. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158–2165. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, T.; Jiang, K.; Da, P.; Peng, Z.; Tang, J.; Kong, B.; Cai, W.B.; Yang, Z.; Zheng, G. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Liu, Y.P.; Ren, T.Z.; Yuan, Z.Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347. [Google Scholar] [CrossRef]
- Ding, C.; Yu, Y.; Wang, Y.; Mu, Y.; Dong, X.; Meng, C.; Huang, C.; Zhang, Y. Phosphate-modified cobalt silicate hydroxide with improved oxygen evolution reaction. J. Colloid. Interface Sci. 2023, 648, 251–258. [Google Scholar] [CrossRef]
- Yang, Y.; Fei, H.; Ruan, G.; Tour, J.M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175–3180. [Google Scholar] [CrossRef]
- Liu, Y.; Ran, N.; Ge, R.; Liu, J.; Li, W.; Chen, Y.; Feng, L.; Che, R. Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chem. Eng. J. 2021, 425, 131642. [Google Scholar] [CrossRef]
- Huang, G.; Liang, W.; Wu, Y.; Li, J.; Jin, Y.Q.; Zeng, H.; Zhang, H.; Xie, F.; Chen, J.; Wang, N.; et al. Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. J. Catal. 2020, 390, 23–29. [Google Scholar] [CrossRef]
- Tang, C.; Asiri, A.M.; Luo, Y.; Sun, X. Electrodeposited Ni-P alloy nanoparticle films for efficiently catalyzing hydrogen- and oxygen-evolution reactions. ChemNanoMat. 2015, 1, 558–561. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Yan, H.; Chen, C.; Zhang, D.; Sun, D.; Xu, X. The defect-rich porous CoP4/Co4S3 microcubes as robust electrocatalyst for clean H2 energy production via alkaline overall water splitting. Appl. Catal. A-Gen. 2023, 668, 119461. [Google Scholar] [CrossRef]
- Zhao, S.; Li, C.; Huang, H.; Liu, Y.; Kang, Z. Carbon n+anodots modified cobalt phosphate as efficient electrocatalyst for water oxidation. J. Mater. 2015, 1, 236–244. [Google Scholar]
- Yang, L.; Li, L. Synthesis of uniformly dispersed NiCoFe trimetallic phosphide for efficient overall water splitting. J. Phys. Chem. Solids 2025, 207, 112926. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Q.; Zhao, Q.; Cheng, L.; Jiang, T. A hierarchical core shell CuO@FeCoP/CF heterostructure for efficient overall water splitting in alkaline media. J. Alloys Compd. 2024, 1034, 177291. [Google Scholar] [CrossRef]
- Luo, J.; Tuo, Y.; Zhang, J.; Li, W.; Wang, S.; Li, Y.; Pan, Y.; Zhou, Y.; Zhang, J. Carbon confined Mo doped CoP for alkali overall water splitting with enhanced catalytic activity and durability. Chem. Eng. J. 2025, 510, 161519. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Zhang, D.; Yang, H. The synergistic effect of hard magnetic Co2C and soft magnetic CoFe improves electrocatalytic overall water splitting performance. J. Alloys Compds. 2025, 1036, 181593. [Google Scholar] [CrossRef]
- Jiao, L.; Zhou, Y.X.; Jiang, H.L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695. [Google Scholar] [CrossRef]
- Guo, P.; Wu, J.; Li, X.-B.; Luo, J.; Lau, W.-M.; Liu, H.; Sun, X.-L.; Liu, L.-M. A highly stable bifunctional catalyst based on 3D Co(OH)2@NCNTs@NF towards overall water-splitting. Nano Energy 2018, 47, 96–104. [Google Scholar] [CrossRef]
- Liu, X.; Dong, J.; You, B.; Sun, Y. Competent overall water-splitting electrocatalysts derived from ZIF-67 grown on carbon cloth. RSC Adv. 2016, 6, 73336–73342. [Google Scholar] [CrossRef]
- Niyitanga, T.; Kim, H. Time-dependent oxidation of graphite and cobalt oxide nanoparticles as electrocatalysts for the oxygen evolution reaction. J. Electroanal. Chem. 2022, 914, 116297. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Cheng, C. Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Mater. Today Phys. 2020, 15, 100274. [Google Scholar] [CrossRef]
- Cossar, E.; Houache, M.S.E.; Zhang, Z.; Baranova, E.A. Comparison of electrochemical active surface area methods for various nickel nanostructures. J. Electroanal. Chem. 2020, 870, 114246. [Google Scholar] [CrossRef]









| Sample | Element, at% | |||
|---|---|---|---|---|
| Pd | Co | Fe | P | |
| CoP | - | 90.22 | - | 9.78 |
| CoFeP | - | 83.78 | 9.96 | 6.26 |
| PdCoP | 3.54 | 83.72 | - | 12.74 |
| PdCoFeP | 8.36 | 64.08 | 12.49 | 15.07 |
| Sample | Eonset *, V | η10 **, mV | Tafel Slope, mV dec−1 | Ea, kJ mol−1 |
|---|---|---|---|---|
| CoP | 0.166 | 239 | 78.1 | 11.3 |
| CoFeP | 0.188 | 245 | 76.4 | 6.0 |
| PdCoP | 0.171 | 250 | 76.3 | 4.7 |
| PdCoFeP | 0.213 | 259 | 82.8 | 11.4 |
| Sample | Eonset *, V | ηonset, mV | E **, V | η10 **, mV | Tafel Slope, mV dec−1 | Ea, kJ mol−1 |
|---|---|---|---|---|---|---|
| CoP | 1.5205 | 290 | 1.6607 | 431 | 120.3 | 20.7 |
| CoFeP | 1.5846 | 355 | 1.6650 | 435 | 74.5 | 21.2 |
| PdCoP | 1.5426 | 313 | 1.6255 | 396 | 77.8 | 12.2 |
| PdCoFeP | 1.5577 | 328 | 1.6256 | 396 | 70.5 | 11.8 |
| Cu | 1.7638 | 534 | 1.8750 | 645 | - | - |
| Catalyst | η10 *, mV | Tafel Slope, mV dec−1 | Electrolyte | Ref. |
|---|---|---|---|---|
| PdCoFeP | 396 | 70.5 | 1 M KOH | This study |
| PdCoP | 396 | 77.8 | 1 M KOH | This study |
| CoOx | 423 | 42 | 1 M KOH | [82] |
| Co2P2O7 | 490 | 86 | 1 M KOH | [83] |
| Co(PO3)2 nanosheets | 574 | 106 | 1 M KOH | [83] |
| CoP hollow polyhedron | 400 | 57 | 1 M KOH | [84] |
| Reduced mesoporous Co3O4 nanowires | 400 | 72 | 1 M KOH | [85] |
| CoP-MNA/Ni foam | 390 | 65 | 1 M KOH | [86] |
| CoP | 350 | 47 | 1 M KOH | [18] |
| CoSi-P | 309 | 121 | 1 M KOH | [87] |
| CoP | 300 | 65 | 1 M KOH | [88] |
| Mn-CoP | 288 | 77.2 | 1 M KOH | [89] |
| RuO2/CF | 360 | 164 | 1 M KOH | [90] |
| RuO2 on NF | 290 | 81 | 1 M KOH | [91] |
| IrO2 commercial | 339 | 94.5 | 1 M KOH | [92] |
| Ir/C | 254 | 71.9 | 1 M KOH | [93] |
| Ni0.3Co2Fe-P | 290 | - | 1 M KOH | [94] |
| Co2Fe-P | 367 | - | 1 M KOH | [94] |
| CuO@FeCoP/CF | 240 | - | 1 M KOH | [95] |
| Mo-CoP@C | 280 | 53.1 | 1 M KOH | [96] |
| CoFe@Co2C@Co-0.2/NF | 246 | - | 1 M KOH | [97] |
| Anode II Cathode | Cell Voltage, V | Electrolyte | Ref. |
|---|---|---|---|
| PdCoFeP‖PdCoFeP | 1.69 | 1 M KOH | This study |
| PdCoP‖PdCoP | 1.78 | 1 M KOH | This study |
| Pt/C‖IrO2 | 1.71 | 1 M KOH | [98] |
| Pt/C‖Pt/C | 1.83 | 1 M KOH | [98] |
| CoP/rGO-400‖CoP/rGO-400 | 1.70 | 1 M KOH | [98] |
| Co(OH)2@NCNTs@NF‖ Co(OH)2@NCNTs@NF | 1.72 | 1 M KOH | [99] |
| Co-P/NC/CC‖Co-P/NC/CC | 1.77 | 1 M KOH | [100] |
| Co-P/NC-CC‖Co-P/NC-CC | 1.95 | 1 M KOH | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amber, H.; Balčiūnaitė, A.; Kepenienė, V.; Stalnionis, G.; Mockus, Z.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting. Catalysts 2025, 15, 1035. https://doi.org/10.3390/catal15111035
Amber H, Balčiūnaitė A, Kepenienė V, Stalnionis G, Mockus Z, Tamašauskaitė-Tamašiūnaitė L, Norkus E. Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting. Catalysts. 2025; 15(11):1035. https://doi.org/10.3390/catal15111035
Chicago/Turabian StyleAmber, Huma, Aldona Balčiūnaitė, Virginija Kepenienė, Giedrius Stalnionis, Zenius Mockus, Loreta Tamašauskaitė-Tamašiūnaitė, and Eugenijus Norkus. 2025. "Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting" Catalysts 15, no. 11: 1035. https://doi.org/10.3390/catal15111035
APA StyleAmber, H., Balčiūnaitė, A., Kepenienė, V., Stalnionis, G., Mockus, Z., Tamašauskaitė-Tamašiūnaitė, L., & Norkus, E. (2025). Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting. Catalysts, 15(11), 1035. https://doi.org/10.3390/catal15111035

